A Quantitative Method for Substantive Robustness
Assessment

Forthcoming in Political Science Research and Methods

Justin Esarey* and Nathan Danneman'

April 10, 2014

Abstract

Empirical political science is not simply about reporting evidence; it is also about
coming to conclusions on the basis of that evidence and acting on those conclusions. But
whether a result is substantively significant—strong and certain enough to justify acting
upon the belief that the null hypothesis is false—is difficult to objectively pin down,
in part because different researchers have different standards for interpreting evidence.
Instead, we advocate judging results according to their “substantive robustness,” the
degree to which a community with heterogeneous standards for interpreting evidence
would agree that the result is substantively significant. We illustrate how this can be
done using Bayesian statistical decision techniques. Judging results in this way yields
a tangible benefit: false positives are reduced without decreasing the power of the test,
decreasing the error rate in published results.

Introduction: statistical inference and rational choice
under uncertainty

A long and and cross-disciplinary literature stresses the importance of assessing the sub-
stantive significance of empirical results (Achen, 1982; Hunter, 1997; McCloskey, 1998; Gill,
1999; Lunt, 2004; Ziliak and McCloskey, 2004, 2008; Miller, 2008; Siegfried, 2010); we say

that a result is “substantively significant” when it is justifies acting on the belief that the
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null hypothesis is false.! Naturally, substantive significance of this sort is partially a matter
of individual judgment. These standards include how averse a researcher is to drawing a
mistaken conclusion and how large a relationship must be in order to be scientifically or
politically meaningful. Thus, attempts to use decision theory (Wald, 1950; DeGroot, 2004
{1970}; Pratt, Raiffa and Schlaifer, 1996; Manski, 2007, ch. 12) to establish criteria for
substantative significance are likely to degenerate into disagreement over the utility function
chosen to encapsulate such standards.

In this paper, we argue that it is more helpful to assess a result’s substantive robustness,
the degree to which a community with heterogeneous standards for interpreting evidence
would agree that the result is substantively significant, rather than whether it meets any
individual standard. This focuses attention away from contention about which specific stan-
dards are appropriate and onto the breadth of evaluation standards that can be satisfied by
a particular piece of evidence. The idea is to enable a researcher to objectively demonstrate
whether his/her results should be regarded as substantively significant by a scientific commu-
nity, even if there is significant disagreement in that community over what a substantively
significant result looks like. This approach is compatible with any number of sufficiently
flexible utility functions, but we offer one that we believe is well-suited to the task.

We also offer evidence that requiring results to be substantively robust as well as statis-
tically significant could improve the quality of hypothesis tests in the discpline. Our Monte

Carlo studies reveal that:

1. Results that are both statistically significant and substantively robust are less likely to
be false positives? than those that are merely statistically significant, with no loss in

power.?

2. Statistically significant but substantively meaningless results are extremely unlikely

"'We thank an anonymous reviewer for suggesting this phraseology.

2By “false positive,” we mean incorrectly rejecting a one-sided null hypothesis when that hypothesis is
true.

3By “power,” we mean the probability of rejecting a one-sided null hypothesis when that hypothesis is
false.



when a scientifically important relationship actually exists; observing this pattern al-

lows us to confidently conclude that the result is a false positive.

In short, substantive robustness tests may enable researchers to discriminate between genuine
results and statistical anomalies.

As has been noted in the past (Ziliak and McCloskey, 2004), the statistical significance of
a result can be markedly more or less robust than its substantive significance. We illustrate
this with a re-analysis of two recently published results. In a recent piece by Clinton (2006),
we find that some effects that are statistically significant are not substantively robust to a
reasonable range of standards for the interpretation of evidence. We also re-analyze data
from Clark and Golder (2006), confirming the substantive robustness of the authors’ results
while demonstrating the application of our technique in situations where multiple variables

determine the effect of interest (such as in models with interacted variables).

Drawing conclusions from evidence

To begin, we present an example to help the reader crystallize the dimensions of judgment
on which researchers may differ when making judgments of substantive significance. We
think that this is easiest to do by way of an analogy between an intuitively compelling but
evidence-based decision, and a more ordinary social scientific decision that a researcher might
make in day-to-day work.

Figure 1 illustrates this analogy. Let us assume that researchers develop an interesting
new drug: it can reliably produce any level of weight loss desired by the user. But researchers
suspect that a fatal cancer might be a side effect of the drug. Panel 1la of Figure 1 depicts
a hypothetical posterior belief distribution of the change in cancer probability based on a
series of (imagined) studies; we denote this change in cancer probability r. The distribution
is centered over a 25% increase in a subject’s chance of developing cancer, but the 95%

confidence interval is [—48%, 98%] corresponding to a one-tailed p-value of about 0.25. That



is, the relationship between this drug and cancer is statistically insignificant.

Would you take this drug?

A rational chooser? would consider the potential consequences of taking the drug vs. not
taking the drug under each of the possible states of the world—each of the possible values of
0 Pr (cancer) /Otake drug = r under the posterior—and then determine whether taking the

drug has a positive expected utility:

Elu(take drug) — u(don’t take drug) | data] =

/ [u(take drug|r) — u(don’t take drug|r)] f(r|data)dr =
/u(take drug|r) f(r|data)dr — /u(don’t take drug|r) f(r|data)dr =

Elu(take drug) | data] — E[u(don’t take drug) | data] (1)

The decision to choose to take the drug when the expected utility (in equation 3) is greater

than zero, and to not take it otherwise, is the Bayes decision rule:

d(z) = take drug if Flu(take drug)|z] > Elu(don’t take drug|z)]

don’t take drug otherwise

where we let x signify the data. The rule associates each state of the world f(r|data) with
an optimal Bayes action that maximizes expected benefit (French and Insua, 2000, p. 148).
Uncertainty about the actual effect of the drug plays a role in the decision® through f(r|data).

This Bayes decision rule d(x) is optimal in that it minimizes the Bayes risk, the expected

4See DeGroot (2004 {1970}, Chapter 7), French and Insua (2000, Chapter 6), and Pratt, Raiffa and
Schlaifer (1996, Chapters 3 and 4) for general overviews of Bayesian statistical decision theory.

®The “Bayesian” in Bayesian statistical decision theory comes from the fact that these conditions rely on
the posterior probability of r given the data, f(r|data), which is determined by Bayes’ rule:

__ f(datalr)f(r)
f(rldata) = [ f(datalr) f(r)dr

The analyst must specify a prior, f(r), before determining whether these conditions are met; we will discuss
prior specification in a succeeding subsection.




loss in utility /(e) = —u(e) from a decision rule averaging over both sampling variation in

the data and the prior distribution of r:

BR(d) — / [ / Ld(@)|r) Falr)dz | f(r)dr

Summarily, it is rational to commit to following the Bayes decision rule because it maxi-
mizes utility (equivalent to minimizing loss) given all sources of uncertainty in our empirical
evidence.%

While there may be disagreements over the quality of the evidence, we set them aside to
focus on differences in interpretation of the same evidence. These differences in judgment
presumably come through the utility function u. For example, some people may be more loss
averse’ than others; they would presumably be less willing to gamble on the possibility of
cancer in order to lose weight. The difference on this dimension is in how people weight the
relative value of forsaking a gain if the drug is harmless compared to the value of avoiding a

loss if the drug causes cancer. People may also differ in their absolute valuation of a cancer

outcome: a small but completely certain increase in cancer incidence (say, 0.5%) might be

6 A proof of this proposition is given by French and Insua (2000, pp. 164-165). Begin with the expression
of Bayes risk:

BR(d) / [ / L (d(x)]r) f(a:|r)dx] F(r)dr

Noting that the central term R(z,3) = [ (d(x)|r) f(z|r)dz is often referred to as the (frequentist) risk, the
expected loss integrating over sampling variation given a fixed state of the world r. Reverse the order of
integration without loss of generality:

:/[/l(d(;v)|r)f(x|r)f(r)dr} da 2)

This implies that a decision rule which minimizes the expected loss for every particular data set,
Ji(d(z)|r) f(z|r)f(r)dr, will also minimize the Bayes risk. But this is precisely what the Bayes decision
rule prescribes; it minimizes:

g L@ )
/ Ud(@)|r) f(r|z)d EEora

where the numerator is the central term of equation 2 and the denominator is a constant.

"Here loss aversion refers to overvaluing reductions in utility relative to gains when computing expected
values; this is not directly related to the similarly-named loss function (i.e., the negative of the utility function
in equation 3).




Figure 1: Hypothetical Evidence-Based Decisions
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negligible to some compared to the benefit of weight loss, while others may consider this
same incidence extremely meaningful from a personal or public health perspective.

Now, consider another decision: should we act on the conclusion that democratic states
are less likely to suffer a civil war compared to non-democracies, or treat democracies at least
equally likely to suffer a civil war? Based on (hypothetical) evidence shown in Panel 1b of
Figure 1, the posterior distribution of the difference in intrastate conflict probability (which
we denote as [3) is the same as the distribution of the difference in cancer probability from
Panel 1a. As before, a rational chooser should determine whether there is greater scientific
(or policy) benefit to acting on the conclusion that democracies are less susceptible than
democracy to civil war, or in treating democracies as at least equally susceptible, based on

the available evidence:

Elu(treat as unequal) — u(treat as equal)| =

/[u(treat as unequal|3) — u(treat as equal|3)] f(F|data)]df (3)



More generally, we could write this decision as:

Elu(act on alternative) — u(act on null)] =

/ [u(act on alternative|3) — u(act on null|3)] f(5|data)]dB (4)

where the alternative hypothesis is that democracies are less prone to civil war and the
(default) null hypothesis is that they are at least equally prone to civil war. Of course, we
would not expect u(act on alternative|3) — u(act on null|3) to be the same for this decision
as for the decision to take the weight loss drug. But the considerations involved in shaping
the judgment are similar: (1) how much does the scientist weight the consequences of falsely
acting on the alternative against the consquences of falsely acting on the null, and (2) how
large must democracies’ advantage in civil war susceptibility be before it merits scientific
and political attention?

Rather than argue for a particular answer to these questions, our goal is to determine
whether researchers with a variety of different standards would make the same decision
according to equation 4. We must still choose a utility function, but ideally it will be one
that can fairly represent a variety of standards for evaluating evidence. In particular, it
should be able to represent a continuum of relative valuations for false positives (mistakenly
acting on the alternative hypothesis) and false negatives (mistakenly acting on the null

hypothesis).

Quantifying the decision: utility, loss aversion, and decision rule

The functional form of u(act on alternative|3) — u(act on null|5) is the encapsulation of
scientific judgment in this framework, and there is no universally correct choice. Recall
that our objective is to find whether different standards of judgment would lead to the
same conclusion about the substantive significance of an empirical result. Thus, the precise

choice of functional form is less important compared to its ability to approximate a diversity



of preferences about (a) the tradeoff between false positives and false negatives, and (b)
the minimum effect size required for substantive significance. We suggest a function that
is simple, yet flexible enough to adapt to varying decision contexts and the preferences of
different researchers; we do not claim that it is unique or superior to all possibilities, but
it meets our stated criteria well and provides some inferential benefits that we explore in a
later section.

For the decision of whether to act on the conclusion that the relationship between two
variables (such as democracy and intrastate conflict) is positive and large enough to be

scientifically or politically important, we focus on a loss averse utility function:
u(act on alternative|S, v, c¢) — u(act on null|3,v,¢) = 7_Sign(5_c) B — ] (5)

Here, the alternative is the conclusion that 8 > ¢ and the null is the conclusion that 8 < ¢.®
This utility function is depicted in Figure 2 for ¢ = 0. In terms of our previous democracy-
conflict example, this is equivalent to saying that a non-democracy’s chance of suffering a civil
conflict is at least ¢ more than a democracy’s. Utility is gained in proportion to distance from
the threshold for substantive significance ¢: with all else held equal (i.e., in a single decision
context), bigger relationships are more substantively important than small ones and the
smallest positive relationship worth paying attention to is of size ¢. That is, the consequences
of accepting this conclusion are linearly related to the size of the difference. 7 is a parameter
that describes the valuation ratio for correct and incorrect decisions, or the degree of loss
aversion that the researcher exhibits; v is the degree of kink in the function in Figure 2.
Downward kinks indicate that correctly acting on the alternative is less important than
incorrectly doing so (a false negative is less damaging than a false positive), and correspond
to v > 1. Upward kinks indicate that correctly acting on the alternative is more important

than incorrectly doing so (that is, a false positive is less damaging than a false negative) and

8The utility from accepting an alternative hypothesis of a negative relationship uses the same functions
below, but replaces 8 with —8 and ¢ with —c so that negative [ values yield positive utility and so that the
substantive threshold for significance is less than zero.



Figure 2: Loss Averse Utility Functions
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(8 > ¢) whenever:

/ oS0 (5 _ (] f(5|data)df > 0 (6)

9

and to act on the null hypothesis otherwise.” There are two unknowns, v and ¢, that

9Letting x stand for the data and A(z) = [ ~S182E=) [3 — ] f(B|z)df from equation (6), the frequentist
risk R(z, 8) = [1(d(z)|B) f(x|B)dz of this rule is

R(d,B) = /[7_1 (8=« I(8 > ¢)x Pr(A(z) < 0[f) = y[B—c * (8 < ¢) * Pr(A(z) > 0[f)]dz
Where we set u (null|3<c) = u (alternative| > ¢) = 0, u(null|3 > ¢) = —y~ ! [3 — ], and u(alternative|3 <

¢) = 7B — ¢J; recall that [(e) = —u(e). The Bayes risk further integrates over the distribution of 3 using
the decision rule that forms the basis for R:

BR(d) = / Rz, 8)f(8)dp

Given that the decision rule is (by construction) a Bayes decision with respect to the prior distribution f(3),
it minimizes the Bayes risk and is also f-admissible (French and Insua, 2000, Proposition 30 on p. 166; see



correspond to the two variable dimensions of scientific judgment that we laid out at the

start. By determining the c¢* that solves:

/ oSBT (5 ] f(5|data)df = 0 (7)

we can sketch a y/¢* curve over which the researcher is indifferent to acting on the alternative

hypothesis given v and c*.

Computing ¢* and choice of a prior

Computing the v/c¢* curve is a process that the vast majority of mainstream statistical
software packages are already capable of through add-on packages. We have developed
software for R and Stata that, when given a ~, will compute a ¢* immediately after a linear
regression or other generalized linear model. The software will also determine ¢* when given
manually entered information from a published table (without the accompanying data set).

The software package assumes a truncated uniform prior distribution f(3) on the interval
defined by B + 8¢. This structure assumes minimalistic knowledge of the underlying param-
eters before examining a data set. It also allows for a Bayesian interpretation of frequentist
results: for the classical linear regression model, f(f|data) takes a multivariate ¢t distribution
with n — k degrees of freedom (Gelman et al., 2003, pp. 355-357). The software therefore
uses a t distribution for the posterior when computing ¢* in these cases. For generalized
linear models with this prior estimated via maximum likelihood, f(f|data) is asymptotically
normal as n — oo (Gelfand and Ghosh, 2000, pp. 4-8), and therefore the software uses the
normal distribution in these instances.

Computing ¢* is a matter of finding the roots of equation 7 (or the equivalent for an
alternative utility function). This class of problem is already solved via iterative maximiza-

tion algorithms, such as Newton-Raphson,'® but we are required to compute an integral at

also p. 144)
0Many maximization algorithms involve finding a root of % to find a maximum of f(z). The root-

10



each iteration because we are calculating an expected value rather than a maximum or modal
value. For results with a ¢-distributed or normally distributed posterior, we can use standard
quadrature approaches to quickly compute the integral for each step of the maximization
process.

Some analysts may wish to impose stronger prior beliefs, which will change the distri-
bution of f(/|data). If the prior is conjugate with the posterior, the analyst must replace
the multivariate ¢ or normal distributions with the appropriate posterior distribution before
calculating ¢*. For more exotic posteriors, where f(f|data) is difficult to analytically express,
an approximation can be computed via Markov Chain Monte Carlo methods, stored, and

then used in the integration of equation 7.

What does a substantively robust (or non-robust) find-
ing look like?

Figure 3b sketches the 7/c* curve for our democracy and war example using equation 7. The
relevant question is: can we conclude that non-democracies are susceptible to greater war risk
on the basis of the evidence from Figure 1b? Our answer is that a researcher would accept
an increased civil war probability under the point on the curve corresponding to his/her
v. Equivalently, a researcher would decide how large a relationship had to be before it was
scientifically or politically meaningful and how loss-averse s/he is, then find the appropriate
point in Figure 3b and make the decision indicated. For example, a person who weighted
false positives and false negatives equally (with v = 1) would be willing to act on the belief
that non-democracies are < 25% less likely to experience civil war than comparable non-
democracies. But a person who valued false positives four times as much as false negatives
(v = v/4 = 2) would only be willing to act on a < 5% difference in civil war risk, and a person

who valued false positives even more highly would always act on the null (of a nonexistent

finding capability of these algorithms is easily adapted to non-maximization root solutions.
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Figure 3: Substantive Robustness of Inference from Figure 1
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or negative relationship). In short, the association between democracy and civil war risk (in
this hypothetical example) is not robust to reasonable ranges of variation in standards for
the interpretation of evidence. It is not necessarily important for a researcher to know his or
her own ~, but simply to acknowledge that a community of people with reasonable variation
in how much they valued false positives more highly than false negatives would not agree
upon the substantive significance of the relationship between democracy and civil war risk.

By contrast, the conclusion that we should not take the weight-loss drug (for fear of
cancer risk, as shown in Figure la) is quite robust. Figure 3a sketches the v/c* curve for
this example; the key difference, compared to the democracy/war example, is that v € [0, 1]
would be appropriate for a person who was much less concerned about mistakenly acting on
the alternative (accidentally concluding that the drug causes cancer when it does not, and
therefore not taking the drug when it would be beneficial) compared to mistakenly acting
on the null (mistakenly believing that the drug does not cause cancer when it actually does,
and therefore taking the drug when it increases one’s likelihood of developing cancer). For
this reason, even wide variation in standards for the interpretation of evidence produces the

conclusion that there is a large and substantively meaningful link between the drug and
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cancer risk. It is not so important for any particular person to locate their personal value
of 7, but simply to acknowledge that it lies somewhere between 0 and 1 (i.e., that they
value false negatives more highly than false positives in some measure) and that people with
diverse preferences in this domain would avoid taking the drug.

We think these examples illustrate the value of focusing on the robustness of substantive
significance to different standards rather than on any particular judgment of substantive sig-
nificance. Figure 3 makes clear that comparatively small differences in loss aversion (that is,
aversion to falsely rejecting the null) translate to large differences in the assessment of sub-
stantive significance. Aggressive researchers who are relatively indifferent to false positives
(v =~ 1) would conclude (based on our hypothetical evidence) that there is a substantively
significant association between democracy and civil war probability as long as they thought
that a 25% increase in war probability was meaningful. More cautious researchers who
weight false positives as more damaging (v 2 2.5) would never draw this conclusion. These
are rather wide differences in judgment that relate to incommensurable differences in sci-
entific viewpoint. Consequently, we think that arguing for a universally acceptable v, let
alone a universally acceptable form for wu(act on alternative) — u(act on null), is probably
hopeless in the context of academic research. By focusing on the breadth of preferences for
which a result is substantively significant rather than any particular preference, we sidestep
the knotty question of “whose judgment is correct?” in favor of the more readily answerable

“would this evidence satisfy most researchers?”

Substantive robustness assessment can improve the qual-
ity of published results

When it comes to statistical hypothesis testing, we determine that it is advantageous to
require a result to be both substantively robust and statistically significant in order to be

scientifically notable, compared to statistical significance alone. Aside from the theoretical

13



and descriptive value of assessing the substantive robustness of results, requiring a statistical
relationship to be statistically significant and substantively robust before rejecting the null
hypothesis (of no relationship) results in a more powerful test (a greater probability of reject-
ing false null hypotheses) at any given size (probability of rejecting correct null hypotheses).
This advantage accrues to the combined procedure because results that are statistically sig-
nificant but substantively fragile frequently occur when the null hypothesis is true, but rarely
occur when the alternative is true. The upshot is that a researcher using our procedure will
draw fewer mistaken conclusions than a researcher just using statistical significance testing.

To demonstrate, we conduct a simulation to calculate the rate at which the null hypothesis

is rejected using two different procedures:
1. statistical significance: reject if two-tailed p < a.

2. combined statistical significance and substantive robustness: reject if

(a) result is statistically significant (two-tailed p < «), and

(b) ¢* >0 for vy =2.

For the second procedure, we choose a relatively small v = 2 in order to ensure a very
minimal bar for substantive robustness. We also set the critical threshold for substantive
acceptability to ¢* > 0, the smallest (and easiest-to-pass) threshold for a test of a positive
relationship, for the same reason. In short, a result will be judged substantively robust in
this simulation if someone with v < 2 would be willing to act on the alternative hypothesis,
even for a very small relationship size.

Our simulation uses a linear DGP:

y=2+0Gx+u

In all simulations, u ~ ®(ux = 0,0 = 0.5). We use three values of §,: £, = 0.75 (a

“large effect” more easily detected by statistical tests), £, = 0.25 (a “small effect” harder to

14



Figure 4: Size/Power Analysis for Statistical Significance Testing, With and Without Sub-
stantive Robustness Checking

(a) Large effect (b) Small effect
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distinguish from noise), and 3, = 0 (the null hypothesis). For each value of 3., we conduct
1000 simulations with data sets of size n = 100 each. We then repeat these simulations for
values of « (the critical value for the statistical significance test) between 0.005 and 0.2 to
get a range of false positive rates. The results are depicted in Figure 4.

Figure 4a plots the proportion of the time that a test procedure rejected the null when
B: = 0 on the x-axis, and the proportion of the time that the test rejected the null when
B = 0.75 on the y-axis; Figure 4b plots the same relationship, but with the null rejection
rates for 5, = 0.25 on the y-axis. Ideal performance would mean a completely I'-shaped
curve—an estimator that could achieve a 100% true positive rate at a 0% false positive
rate. Better testing procedures are those which have larger true positive rates for every false
positive rate: they can correctly reject false null hypotheses without accidentally rejecting
true null hypotheses. As the figure shows, combining statistical significance with a very
minimal evaluation of substantive acceptability—a mildly loss-averse researcher (v = 2)
must be willing to accept an effect of any magnitude—improves the power of the test at

every size. The performance gap varies according to the nature of the DGP and the a value
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of the statistical significance test, but combined testing improves power by as much as 10
percentage points in our simulations (for a false positive rate ~ 10% in Figure 4b).

We also find support for a very useful rule of thumb: if a result is statistically significant
but not substantively meaningful (¢* = 0 when v = 2), in all likelihood the null hypothesis

is the correct one. The relevant Bayesian formula for beliefs in this situation is:

Pr(null false|stat. sig., sub. not robust) =

Pr(result pattern|null false) Pr(null false)
Pr(result pattern|null false) Pr(null false) + Pr(result pattern|null true) Pr(null true)

But in our simulations, there were no occurrences where the result was statistically significant
but substantively not robust (¢* = 0 when v = 2) when the null was false; all of the
false negatives in the combined test were cases where the result was substantively but not
statistically significant. To ensure the robustness of this finding, we repeat our simulations
for 5, = 0.25 with greater noise in the DGP (u ~ ®(y = 0, 0 = 2.5)), making false negatives
much more likely. We still find that this pattern of results only occured 1.5 percent of the

time under the null hypothesis, leading to an updated belief of:

0.015 % 0.5
Pr(null false|stat. sig., sub. not robust) = 0E7 05 _:0 98205 — 0.349

where we determine Pr(result pattern|null true) = 0.028 by repeating our simulations for
B = 0 with u ~ ®(0, 2.5). Even under a prior probability of 50% that the null is false,
the posterior probability that the null is false is only 34.9%—nowhere close to conventional
significance levels in a hypothesis test. Summarily, our simulation evidence indicates that
statistically significant but substantively non-robust results are almost surely ascribable to

chance.
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Assessing the substantive robustness of existing research

As a technical matter, it is straightforward to assess the substantive robustness of existing
research with our technique. We demonstrate using two recently published articles from
prominent general interest journals in political science. These examples allow us to show
how quantitatively assessing substantive robustness helps to refine our interpretation of re-
sults. They also illustrate how our techniques are applied to models with complex marginal
effects, such as those from models with interaction (product) terms, where these substan-
tively important quantities are a combination of multiple coefficient estimates and cannot be
read directly off of a coefficient table. Finally, we provide documented code for each of these
examples that readers can use to replicate our results or adapt for use in their own inference

problems.

Applied example: Clinton (2006)

First, we will re-examine some of the critical results from Joshua Clinton’s 2006 article on
representation in Congress in the Journal of Politics (Clinton, 2006). In this article, Clinton
examines the relationship between a survey-based ideology measure of residents of American
congressional districts in the year 2000 and legislator ideal points estimated on the basis

1 In his OLS regression analysis, Clinton finds that there is a positive

of voting records.
relationship between the conservatism of a Republican legislator’s voting record and the
degree of conservatism expressed by his/her Republican constituents. The same relationship
exists between a Republican legislator’s record and their Democratic constituents’ ideology.
The conservatism of Democratic legislators’ records, by contrast, is associated with the
conservatism of their Republican, but not Democratic, constituents.

While Clinton uses both OLS regression and an errors-in-variables regression designed

to correct for measurement errors, we focus on the OLS results in this replication.!'? We

UThe legislators ideal points are estimated in Clinton, Jackman, and Rivers (2004).
12The ¢* approach is easily applied to EIV regression, but describing this technique would distract from
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Table 1: Constituent influence on “key votes” in Congress, Table 3 from Clinton (2006)

OLS Rep. OLS Dem.
I53 s.e. I5; s.e.
Wgt. Same Party Avg. Ideology 1.614* 4214 .1907 .3290
Wgt. Different Party Avg. Ideology .6997* .3632 2.167* .3241
Constant 4602* 11182 -.1.145%* .0919

Dependent variable = legislator ideology score from Clinton, Jackman and Rivers (2004). N = 222
(Republicans) and 210 (Democrats). R2 = 0.09 (Republicans) and 0.26 (Democrats). A * indicates
statistical significance, & = 0.05 (one-tailed).

perform the same OLS regression that Clinton ran, whose results are shown in Table 1. We
then calculate a substantive robustness plot for all four effects: the effect of Republican
and Democratic constituents on Republican legislators and on Democratic legislators. These
plots are shown in Figure 5.

In Clinton’s analysis, Republican and Democrat constituents’ ideologies have a statis-
tically significant relationship with their Republican legislators’ voting records, but only
Republican constituents’ ideology is related to Democrat legislators’ voting records. Sub-
stantively speaking, however, the robustness of these results varies. Republican constituents’
ideology seems to have a reasonably robust relationship with both Democrat and Republican
legislators’ voting records (Figures 5a and 5c¢): even researchers who value false positives 36
times more than false negatives (7 = 6) would act on the belief that the coefficient < 1.
With a coefficient of 1, a one standard deviation change in constituent ideology is predicted
to move a Democratic legislator at the 50th percentile of his/her party’s ideology moving to
the 57th percentile. The effect on Republican legislators is smaller, but still politically sig-
nificant: a one standard deviation change in Republican constituents’ ideology is predicted
to move a Republican legislator at the 50th percentile of his/her party’s ideology to the 53rd
percentile. Visually, we can see that these results are substantively robust because the range
of acceptable coefficients is large across a very wide swath of loss aversion coefficients ~.

The relationship between Democrat constituents’ ideology and legislators’ voting records

is much less robust. This may not be immediately clear from looking at the coefficients in

the central purpose of the present article.
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Figure 5: Substantive robustness assessment for constituent influence on “key votes” in
Congress, from Clinton (2006)
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Table 1. For instance, the 90% confidence interval for Democratic constituents’ effect on
Republican legislators is [0.1, 1.3]. This estimate indicates considerable uncertainty about
this relationship, but it also firmly excludes the null and includes the possibility of a subtan-
tively large relationship. But as Figure 5b shows, a community of heterogeneous researchers
would tend to agree on a coefficient of less than or equal to about 0.2—quite close to the
left boundary of the 90% confidence interval. A coefficient of this size implies that one stan-
dard deviation change in Democrat constituent ideology moves a Republican legislator at
the 50th percentile of his/her party’s ideology to the 51.8th percentile. That is a reasonably
small relationship, probably politically ignorable. We conclude that the relationship between
Democrat constituents and Republican legislators is not robust to different standards of sub-
stantive judgment. Visually, the non-robustness of these relationships is visible because the
range of acceptable coefficient sizes is close to zero (or actually zero) for even modest values
of loss aversion .

Given our earlier simulation results, indicating that false positives are minimized by ac-
cepting only those results that are substantively robust and statistically significant, we are led
to conclude that Clinton’s evidence does not support a link between Democrat constituents’
ideology and the voting records for legislators of either party. Indeed, when estimating an
errors-in-variables regression on the same data, Clinton comes to the same conclusion (but

on the basis of statistical significance).

Applied example: Brambor, Clark and Golder (2006)

In an influential paper, Brambor, Clark and Golder (2006, hereafter BCG) describe the im-
portance of interpreting interaction terms substantively, and provide tools and techniques
for informative interpretation. These tools and techniques are readily adapted to substan-
tive robustness assessment using our technique. In one example, BCG present a graphical
method of presenting marginal effects from linear models with interaction terms. Their ex-

ample comes from Clark and Golder (2006), a model of the relationship between presidential
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Table 2: The impact of presidential elections on the effective number of electoral parties
(Replication of Table 1 from Brambor, Clark and Golder, 2006)

Regressor g s.e.
Election Proximity -3.93 0.54
Presidential Candidates 0.33 0.17
Proximity * Pres. Cand. 0.84 0.23
Controls - -
Constant 3.11 0.33

OLS model of the number of electoral parties in

the legislature. Standard errors are clustered on

country. R? =0.25, N = 602.
elections and legislative fragmentation (the number of parties in the legislature). The model
is listed in Table 2; note that the relationship between the proximity of presidential elec-
tions and the number of electoral parties in the legislature is contingent on the number of
presidential candidates.

To test hypotheses about the marginal effect of presidential elections on legislative frag-

mentation, BCG recommend constructing a plot like the one in Figure 6a, which shows this
marginal effect and its 95% confidence interval for different numbers of presidental candi-

dates. Mathematically, the marginal effect shown in the figure is:

0 # candidates

0 presidential elections

= Bprowimity T (Bprowscand * # candidates)

and therefore a combination of multiple coefficients from the regression. In Figure 6b, we
augment this assessment of statistical significance with a substantive robustness assessment.
Specifically, we use our software to determine c* for each number of presidential candidates
using the loss averse utility function from equation 5 and a variety of different loss aversion
coefficients v.1> The shaded regions indicate the marginal effect sizes that could be acted
upon by researchers with the corresponding level of loss aversion . The wider the shaded

range, the more robust is the judgment of substantive significance.

B3Inference about the substantive significance of a marginal effect (dy/dz|z) = (y.|2) in an interaction
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As the figure shows, when the number of presidential candidates is small (between 0
and ~ 1.5) there is a very robust negative relationship between presidential elections and
the number of electoral parties. Even researchers who are extremely averse to false positives
(v > 20, valuing a false positive 400 times more than a false negative'*) should conclude that
the number of legislative parties participating in an election shrinks by ~ 1 when concurrent
presidential elections are held (compared to legislative elections held precisely in between
presidential terms, such as a U.S. midterm election). To reduce the interpretation to simple
visual terms, there is a broad swath of the marginal effect space that is shaded at a very
high level of v, indicating that even researchers extremely averse to false positives would
act on the alternative hypothesis of a large marginal effect. In short, researchers with a
wide variety of standards for the interpretation of evidence would accept a large relationship
between presidential elections and the number of electoral parties in the legislature.

This negative relationship becomes less robust as the number of presidential candidates
grows. When there are three presidential candidates, for example, researchers who are even
moderately averse to false positives (7 > 4) would act on the null that there is no relationship
at all. Those who are reasonably indifferent between Type I and II errors (y < 2, valuing
false positives 4 times as much as false negatives) would be willing to act on the belief
that a reduction of ~ 1 party occurs when presidential elections are concurrent. These
same researchers would also accept a that positive relationship exists between the number
of legislative parties and the fact of concurrent presidential elections when there are a very

large number of presidential candidates competing for office (=~ 6). In visual terms, only a

term context makes use of samples from the distribution f(y.|f(8|data), z) to calculate the root in ¢ of:

/ [u(accept|y; (ﬂv Z)a C) - U(reject|y; (ﬁ, Z), C)] * (8)
FQLlf (Bldata), z)dy. = 0

With a sufficient number of samples from f(y.|f(8|data), z) to allow for accurate kernel density estimation of
the underlying distribution, the integral on the right hand side of equation 8 can be numerically calculated
as easily as that of equation 3 using standard numerical integration packages. Our software allows the
calculation of a ¢*value when fed a large number of samples from f(y.|f(8|data), z) and a + value.

14To put the preference into perspective, a person with these preferences would refuse to pay $2.50 for a
lottery ticket with a 50% chance of paying off $1000!
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Figure 6: Robustness Assessment for the Marginal Effect of Proximate Presidential Elections
on Number of Electoral Parties in the Legislature (Figure 3 from Brambor, Clark and Golder,
2006)

(a) Statistical Significance Assessment (b) Substantive Robustness Assessment
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small portion of the marginal effect space is shaded, and only for comparatively small ; this
indicates that many researchers would not conclude that there is a substantively significant
relationship (i.e., they would act on the null).

The pattern of substantive findings—a negative relationship between legislative parties
and proximate presidential elections when the number of presidential parties is low, and
no relationship otherwise—is consistent with the statistical significance findings depicted
in Figure 6a, and with Clark and Golder’s theoretical hypothesis. Based on our earlier

simulations, we therefore have a great deal of confidence in the robustness of this finding.

Conclusion

Our paper has focused on making three claims:

1. Substantive significance is easy to subjectively explain (a result strong and certain
enough to justify acting upon), but hard to objectively specify because of reasonable

differences in scientific judgment.
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2. As a consequence of (1), it is more productive to ask “would researchers with widely
varying preferences consider this result substantively significant?” rather than “is this
result substantively significant?” The first question is equivalent to asking, “is this

result substantively robust?”

3. Requiring that results be substantively robust as well as statistically significant results

in more powerful hypothesis tests and fewer erroneous results.

It remains for us to argue for why should researchers use our particular technique to assess
the substantive robustness of their results. It is both possible and useful to think about
the substantive significance of results in more heuristic ways. For instance, Achen (1982)
recommends examining the bounds of a 95% confidence interval of a marginal effect, thinking
through the political significance of the relationship if the effect were on either boundary.
We certainly do not want to argue against the value of this kind of analysis.

We think that our procedure is a valuable supplement to heuristics like those proposed by
Achen (1982) because it clarifies the role of heterogeneous researcher standards in the forma-
tion of substantive judgments. By applying our technique, it becomes easier to distinguish
results that are reasonably robust in one way or another—either most people would agree
that a relationship exists, or that it doesn’t, based on the available evidence—from those that
are more contentious and for which more information is required. From a hypothesis testing
perspective, the formality of our procedure also allows us to establish an important benefit
of substantive robustness assessment: requiring a relationship to be statistically significant
and (minimally) substantively robust improves our ability to distinguish true positives from
false positives.

Going a bit further, we also think that our procedure is more rational and consistent
than heuristic assessment because it is explictly built on settled, existing work in statistical
decision theory and rational choice theory. It ensures that results are objectively evaluated
inside of the reasonable bounds of subjective differences in judgment. And, we hope that

it is no less convenient than heuristic substantive assessment because the process is pre-
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programmed for use in a wide variety of models and can be performed with only a few
keystrokes.

Our argument does not hinge on the choice of any particular utility function to be used
inside of our framework, and indeed we cannot hope to evaluate the infinite space of possible
alternatives. We have shown that our particular choice is able to accommodate widely varying
opinions about (a) the proper tradeoff between the risks of false positive and false negative
and (b) the minimum coefficient size needed for substantive significance. We have also shown
that a statistically significant result that is substantively robust under our particular utility
function is extremely unlikely to be a false positive, and that requiring substantive robustness
alongside statistical significances improves power (true positive detection) at any fixed size
(false positive rate). We believe that is prima facie evidence for the value of our choice
of utility function; it improves on the status quo of statistical significance testing only (or
significance testing with informal arguments about substantive significance). But we must
accede that there could be other possibilities that would be even better on these dimensions,
and leave this exploration to future work. Our main point is that inferences should be robust
to disagreement about important dimensions of judgment, not sensitive to them.

We also believe future work should explore certain applications that would be especially
helpful to applied researchers. In particular, not all model products are simple coefficient
distributions or even affine functions of coefficients (as in our illustrations). There exist, for
example, joint F-tests to simulaneously test for the joint statistical significance of a group
of coefficients. It would undoubtedly be helpful to assess the joint substantive significance
of a group of coefficients as well. This would allow a researcher to ask whether a group of
marginal effects is collectively influential enough on a dependent variable to be substantively

actionable even if any individual effect is not.
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