Motivating Questions

Thursday, August 23, 2012 1:4

Two inter-related, but distinct questions:

- 1) Is my model doing a good job inside of the sample?
 - a. Is it a good fit to the data set?
 - b. Is it the best-fitting model among a set of candidate models?
 - c. Are its results robust to minor variations in the data?
- 2) Is my model a good choice for this situation (structure of the dependent/independent variable, correlation structure of the data, etc.)?
 - a. Will I recover correct parameters (e.g., beta coefficients)?
 - Will I recover unbiased, low-variance estimates of substantively meaningful quantities (e.g., marginal effects)?
 - c. How would we expect the model to perform under adverse conditions?

The first question asks us to assess the performance of a **particular model (estimator + sample)** using sample diagnostics, while the second question asks us to assess the characteristics of an **estimator** in different environments

is my linear model a good fit for this experimental data set?

model in this situation?

How does my extrator (DLS)

perform under these

commissiones?

Assessing In-Sample Fit

Thursday, August 23, 2012 2:28 PM

- There are lots of ways we might assess a model's quality, and these assessments presumably vary according to the model's goals
 - o Example: are false positives or false negatives more important to avoid?
- Consider a simple example model: $y = X\beta + \epsilon$
- There are many informal assessment techniques
 - o Prediction plots
 - o Residual plots

Added Variable Plots

Thursday, August 23, 2012 9:13 PM

Problem with a basic scatterplot: omitted variable bias / spurious relationships

Added variable plots allow an analyst to examine the relationship between the dependent variable and one
independent variable, controlling for the other variables in the model

1. Predict y using all the independent variables z except x, save the residuals $y = \beta_0 + \beta_2 = \beta_0 + \beta_0 = \beta_0 + \beta_0 = \beta_0 + \beta_0 = \beta_0 + \beta_0 + \beta_0 = \beta_0 + \beta_0$

3. Plot the residuals from (1) against the residuals from (2); the relationship in this plot (e.g., the estimated coefficient on a regression slope) will be identical to the relationship found between x and y in a multivariate model including z

• Allows diagnosis of possible non-linearities and the assessment of marginal contribution to the model

Squared Errors and Likelihood

Friday, August 24, 2012 12:22 PM

- What about more formalized assessments of fit quality?
- One common criterion: how well does the model fit the data?
 - Pathway 1: the goal of a model is to minimize error in predictions $\hat{y} = X\hat{\beta}$
 - Sum of squared errors: $SSE = \sum_{i=1}^{N} (\hat{y}_i y_i)^2$
 - R-squared: $R^2 = 1 \frac{SSE}{SST} = 1 \frac{\sum_{i=1}^{N} (\widehat{y}_i y_i)^2}{\sum_{i=1}^{N} (\widehat{y} y_i)^2}$ prop. of dardne my explaned by model
 - Pathway 2: the goal of a model is to be consistent with the joint probability of this realization of the dataset
 - Likelihood: $L = \prod_{i=1}^{N} \Phi(\hat{y_i}) u = X_i \hat{\beta}, \Sigma = \sigma^2 N_{XXN} = \sqrt{\frac{1}{2\pi\sigma^2}} \prod_{i=1}^{N} \left(\frac{\exp(-(\hat{y_i} y_i)^2)}{2\sigma^2}\right)$
 - For the simple linear model, note that maximizing the likelihood is equivalent to minimizing the sum of squares.

pr(data (model)

- These are two extremely common ways of assessing model quality, but not necessarily the only possible ways.
- We could assess a model's quality by looking at these measures of in-sample fit on an absolute scale and/or comparing them to others
 - \circ The parameters of the model, \hat{eta} , are fitted to maximize a particular model's R-squared / likelihood

• Problems?

Susceptible to over-fitting

Do not account for Hoise Intrinsic to the data
 Likelihood statistics are difficult to interpret or meaningfully compared.

Likelihood statistics are difficult to interpret or meaningfully compare

Cross-Validation

Thursday, August 23, 2012 3:50 PM

ŷ . O . N

leave-one-our cross validation

- Question: is my model being over-fitted? Should I add/remove variables or terms from my model?
- One way of dealing with over-fitting: cross-validation (called the *PRESS* criterion in the readings)
- Idea:
 - 1) Drop one observation from the data set
 - 2) Estimate a model without the dropped observation
 - 3) Predict \hat{y} for the dropped observation using the estimated model
 - 4) Replace the dropped observation in the data
 - 5) Repeat 1-4 for each observation
- No chance of over-fitting: the model does not include the fitted observation
- Compare each model's cross-validated prediction error, and choose the one with the lowest error
- Computationally demanding for large data sets (N+1 models must be estimated!)

Complexity-Adjusted Criteria

Thursday, August 23, 2012 3:50 PM

• Another approach to over-fitting: penalize fit statistics for model complexity, so that adding an arbitrarily large number of terms to the model does not result in fit improvement

oadjusted- R^2 : $\bar{R}^2 = 1 - (1 - \bar{R}^2)$ where k is the number of terms in the model larger is better

*

Akaike's Information Criterion:

 $AIC = 2k - 2 \ln L$

(in the linear model) = $2k + n \ln SSE - n \ln n$

smaller is better

Note: this is asymptotically equivalent to leave-one-out crossvalidation in the linear model, and in some other models!

N-> 00

Bayesian Information Criterion: BIC $k \ln n$ $\ln L$

(in the linear model) = $k \ln n + n \ln SSE - n \ln n$

smaller is better

- There are many "information criteria" family penalized fit statistics, each with their own theoretical justification; the main difference is in the penalty term
- Can compare non-nested models (i.e., models that contain different terms on the right hand side) as long as they are all estimated on the same dependent variable data

AIC - CV,

Outliers and Influential Observations

Friday, August 24, 2012 12:45 PM

• Side topic: occasionally, influential observations can have a significant impact on a model that negatively influences the quality of the overall fit to the data set

DFBETAS: sandardized change in the \hat{eta} coefficients when observation i is deleted

• There are also formal diagnostics for identifying influential observations

o Examine observations with large DFFITS/DFBETAS to consider deletion or reweighting

