OLS as an accurate model
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Up to this point, all the propert!es of OLS regression have been agnostic about the underlying DGP -~ that is,
they hold rega . To recall, these properties include:

\j O ><
But if we are willing to assume that the world is a linear model:

v=X§+u

Then OLS has some very attractive properties when applied to data from this truly linear DGP.

Each of these results relies on i ake about the world; the results are, in fact,
derived from a combination of these assumptions and the logical rules of mathematics.

= the minima! set

se assumptions are generally thought to be the most important, becay
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The Classical Linear Regression Model (CLRM)
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4) X is non-stochastic (fixed)
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f is an unbiased estimate of
Sunday, February 12, 2012
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Theorem: f8 is an unbiased estimate of f; that is, E|#| = B.
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What assumptions did we need for this proof? Which assumptions did we NOT need for this proof?
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Properties of expectations
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Relaxing assumptions: Stochastic X
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Suppose that X is not fixed/non-stochastic. We can still demonstrate that E | ﬁ| = . We will, however,
need to make a different assumption...
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New assumption 4: E[(X'X)~1X'ulX| = 0.
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Can a biased model be a useful model?
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12:43 PM
peope | efc .
The autodistributed lag model: frequently estimated, always biased.
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Let's figure out what an estimate of 8, or 8, will look like for a properly specified model of this type.
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We can also show that ADL models are biased in R. (Show this.)

i be consistent. What does it mean for a model to be consistent?
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Quantifying uncertainty about 8
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Just because E|f| = B doesn't mean that any particular f is necessarily close to the true value of .
Uncertainty remains in the estimate of 5 -- we can't be sure that any particular estimate is just right. Is
there any way to quantify this uncertainty? The answer is yes: we calculate var(f).
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This matrix is called the variance-covariance matrix, or VCV matrix, of . Let's construct a VCV matrix in
R.

-\ | 2V

ey C@) = ) oW

4 - Properties of OLS Page 21




Properties of the VCV
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It turns out that estimates of the VCV that come out of OLS are the "most efficient" estimates possible with a

linear model--that is, they are the smallest possible accurate estimates of var(f). This doesn't mean that
they're the smallest possible estimates...
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Theorem 3.1 (in Dayidson and MacKinnon) -- the Gat
Jicient than any other linear unbiased
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What Gauss-Markov says is that OLS is the Best Linear Unbiased Estimator (BLUE) under the CLRM

assumptions -- IF those assumptions are correct. Other estimators might be more efficient if they are
(a) non-linear, or (b) biased.

bias— W Gunce ‘vmluoh@

\g-onE2 Le! g U loraScd .
A | EZ
J;_L;E\

TLEZ Now | e
L T € * biosed
£y T 4+ NL bt Lo

\ S

\Z
ST

Vandrcg

4 - Properties of OLS Page 22



Non | Meer—
1€ : bused
bt lowec,

> hoos

Vandrcg.

4 - Properties of OLS Page 23



