Graphical operations with vectors

Wednesday, February 08, 2012
5:43 PM

Plotting a vector in space
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Subtracting two vectors
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Subtracting two vectors
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Vector Spaces

Wednesday, February 08, 2012
5:49 PM

Vectors form a subspace in R¥
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Any point in the space of k linearly independent column vectors X, can be expressed as a
combination of the column vectors in X.
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Wednesday, February 08, 2012

The graphical connection to OLS Regression
5:54 PM

In a linear regression, the columns of X;,«, form a space in RX. This space is a subspace of the n-dimensional
space defined by observations.
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Now, it should be clear why we need n > k in order to run a regression!
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Projection

Wednesday, February 08, 2012
5:57 PM

We know that "something" is done to the y variable using the X matrix to produce predictions ...
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...and we know that ¥ + ii = y, so that by vector addition these two must form some kind of triangle in

vector space.
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Linear regression represents a "projection" of the y-vector onto the space defined by X,,»j. Let's see this
graphically.
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We can also decompose the operations of regression mathematically to get a sense of what is going on
here.

This final result is called the "projection matrix" Py.
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Orthogonality

Wednesday, February 08, 2012
6:04 PM

X and i are orthogonal. By "orthogonal" we mean...

2XBii =90
u cannot be represented by vectors in X P \

X(X'X)™1X'u = 0 (there is no projection of i onto X)
Aregressionof X onu = 8, = 0.
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These are all properties of the ESTIMATES, not of the data generating process or the real world. It is not necessarily true that X8 and u
are orthogonal! ANY regression of ¥ on u will yield these results, no matter what the data generating process is.
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All of the points we've just made hold in > 2 dimensional space, of course (which is good--most data sets have more than two
observations!). They're just hard to draw.
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Variance decomposition and the sum of squares

Wednesday, February 08, 2012
6:13 PM

Recall: X(X'X)~1X' = projection matrix = Py projects any n X 1 vector onto the space defined by X.
There is an equivalent "residual matrix" My.

The Pythagorean theorem says that ||Xﬁ||2 + 1wl = lyll%.
¢ Side note: whatis ||-|[?

This fact gives us some information about the degree to which X can explain the variance of y.
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Facts about projection matrices

Wednesday, February 08, 2012
6:19 PM

Py is idempotefit: PyPy = Py. WhyYs this true intuitively? (Prove for homework!)
N

My is idempotent: MyMy = My. Why is this true intuitiely? (Prove for homework!)

MyPy = 0 = PyMy. Why is this true intuitivgly? (Prove for homework!)
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@d Py = Px. Let's prove this one formally to give you an example for your homework.
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Frisch-Waugh-Lovell Theorem

Wednesday, February 08, 2012
6:27 PM

Consider two regressions:

1) y=XB+u
2) Myy = MyX,p, + residuals

where X = [X; X,] (a partitioned matrix of variables) and § = |§1 |
2

The Frisch-Waugh-Lovell (FWL) theorem says that the estimates of 8, are the same for regressions (1) and (2).

Proof:
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Uses of the FWL Theorem

Wednesday, February 08, 2012
6:31 PM

1) Scatterplots can be created that correct for spurious correlation. This is a great way to give a visually compelling but statistically
honest reporting of the relationship between two variables. (Show example in R.)
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2) Standardizing variables (e.g., by centering them around their mean) does not change our
estimates of f.
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