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Abstract

When a researcher suspects that the marginal effect of  on y varies with z, a com-
mon approach is to plot dy/dx at different values of z along with a pointwise confidence
interval generated using the procedure described in Brambor, Clark, and Golder (2006)
in order to assess the magnitude and statistical significance of the relationship. Our
paper makes three contributions. First, we demonstrate that the Brambor, Clark, and
Golder approach produces statistically significant findings when dy/dz = 0 at a rate
that can be many times larger or—smaller than the nominal false positive rate of the
test. Second, we introduce the interactionTest software package for R to implement
procedures that allow easy control of the false positive rate. Finally, we illustrate our
findings by replicating an empirical analysis of the relationship between ethnic hetero-
geneity and the number of political parties from Comparative Political Studies.
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Introduction

Much of the recent empirical work in political science! has recognized that causal rela-
tionships between two variables  and y are often changed—strengthened or weakened—by
contextual variables z. Such a relationship is commonly termed interactive. The substantive
interest in these relationships has been coupled with an ongoing methodological conversa-
tion about the appropriate way to test hypotheses in the presence of interaction. The latest
additions to this literature, particularly King, Tomz and Wittenberg (2000), Ai and Norton
(2003), Braumoeller (2004), Brambor, Clark and Golder (2006), Kam and Franzese (2007),
Berry, DeMeritt and Esarey (2010), and Berry, Golder and Milton (2012), emphasize visually
depicting the marginal effect of z on y at different values of z (with a confidence interval
around that marginal effect) in order to assess whether that marginal effect is statistically
and substantively significant. The statistical significance of a multiplicative interaction term
is seen as neither necessary nor sufficient for determining whether x has an important or
statistically distinguishable relationship with y at a particular value of z. That is, although
a statistically significant product term is sufficient for concluding that dy/0x is different at
different values of z (Kam and Franzese, 2007, p. 50), it cannot tell us whether dy/dx is
statistically distinguishable from zero at any particular value of z.

A paragraph from Brambor, Clark and Golder (2006) summarizes the current state of

the art:

The analyst cannot even infer whether x has a meaningful conditional effect on
y from the magnitude and significance of the coefficient on the interaction term
either. As we showed earlier, it is perfectly possible for the marginal effect of x
on y to be significant for substantively relevant values of the modifying variable
z even if the coefficient on the interaction term is insignificant. Note what this

means. It means that one cannot determine whether a model should include an

!Between 2000 and 2011, 338 articles in the American Political Science Review, the American Journal of
Political Science, and the Journal of Politics tested some form of hypothesis involving interaction.



interaction term simply by looking at the significance of the coefficient on the
interaction term. Numerous articles ignore this point and drop interaction terms
if this coefficient is insignificant. In doing so, they potentially miss important

conditional relationships between their variables (74).

In short, they recommend including a product term zz in linear models where interaction
between x and z is suspected, then examining a plot of dy/dx and its 95% confidence interval
over the range of z in the sample.? If the confidence interval does not include zero for any
value of z, one should conclude that x and y are statistically related (at that value of z),
with the substantive significance of the relationship given by the direction and magnitude
of the dy/0z estimate. It is hard to exaggerate the impact that the methodological advice
given in Brambor, Clark and Golder (2006) has had on the discipline: the article has been
cited over 3300 times as of August 2016. Similar advice is given in Braumoeller (2004, pp.
815-818, esp. Figure 2), which has been cited over 660 times in the same time frame.

Our paper makes three contributions to the study of interactive relationships. First, we
highlight a hazard with the Brambor, Clark, and Golder procedure: the reported a-level of
confidence intervals and hypothesis tests constructed using the procedure can be inaccurate
because of a multiple comparison problem (Sidak, 1967; Abdi, 2007). The source of the
problem is that adding an interaction term z to a model like y = (y + f1x is analogous to
dividing a sample data set into subsamples defined by the value of z, each of which (under
the null hypothesis that dy/dz = 0) has a separate probability of a false positive (i.e.,
falsely rejecting the null hypothesis when the null is true). For example, if z is dichotomous
(z € {0,1}), estimating a model like y = By + 1z + P2z + P32 is analogous to estimating

y = By + Pfix twice, once for data where z = 0 and once for data where z = 1, with

2This advice is spelled out on pp. 75-76 of Brambor, Clark and Golder (2006), when they describe the
application of their technique to a substantive example: “The solid sloping line in Fig. 3 indicates how
the marginal effect of temporally-proximate presidential elections changes with the number of presidential
candidates. Any particular point on this line is %W = B1 + B3 PresidentialCandidates. 95%
confidence intervals around the line allow us to determine the conditions under which presidential elections
have a statistically significant effect on the number of electoral parties—they have a statistically significant
effect whenever the upper and lower bounds of the confidence interval are both above (or below) the zero

line.”



two opportunities for 5 to be found statistically significant by chance. A similar problem
is already well-recognized in the analysis of variance for nominal treatment factors (e.g.,
Kutner et al., 2004, Section 19.9). In contrast, the methods that are described in Brambor,
Clark and Golder (2006) construct a pointwise confidence interval (typically using a two-
tailed @ = 0.05); “pointwise” indicates that the confidence intervals are constructed for
each individual value of z without considering the joint coverage of the confidence interval
for all values of z. That is, the confidence interval for each value of z assumes a single
draw from the sampling distribution of the marginal effect of interest. As a result, these

confidence intervals can either be too-wideor too narrow to conduct the tests that scholars

wish to perform:® plotting dy/dz over values of 2z and reporting any statistically significant

relationship tends to result in overconfident tests,—while-plotting 9y/dsoverz-and requiring

Second, we offer researchers guidance on strategies that are effective and ineffective at
controlling the false positive rate when examining interaction relationships. Our primary
recommendation is for researchers to simply be aware that marginal effects plots generated
using a given « could be over- er-underconfident, and thus to take a closer look if results
are at the margin of statistical significance. When overconfidence is an issue, researchers

can control the false discovery rate (or FDR) in marginal effects plots by adapting the pro-

3Note that “appropriate” width of a confidence interval is relative to the test with which the interval is
associated. The pointwise 95% CIs constructed by Brambor, Clark and Golder (2006) do include the true
value of any given (0y/0x | z = 2p) 95% of the time in repeated samples for a fixed zp, as expected. However,
these 95% CIs do not cover all the true values in a set of (0y/Jz |z € {20, 21, ..., 2t }) 95% of the time; the
CIs are too narrow in this case because they too frequently exclude (0y/0z|z) = 0 for at least one value
of z when the null is true (that is, when (Qy/0x|z) = 0 for all z). Theyalsofalselyrejectthenull too
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cedure of Benjamini and Hochberg (1995);> we provide code to accomplish this in R in our
new interactionTest package. Researchers can also control the familywise error rate (or
FWER) of these plots using a simple F-test (Kam and Franzese, 2007, pp;. 43-51), although
this procedure is more conservative and less powerful than controlling the FDR. We rule
out one possible solution for overconfidence: researchers cannot solve the problem by con-

ditioning inference on the statistical significance of the interaction term (assessing Jdy/0z

for multiple z only when the product term indicates interaction in the DGP) because this

procedure results in an excess of false positives.® In-situationswhere-marginal effectsplots

Finally, we demonstrate the application of our recommendations by re-examining Clark
and Golder (2006), one of the first published applications of the hypothesis testing procedures
described in Brambor, Clark and Golder (2006). The authors’ original analysis, published
in Comparative Political Studies, indicates that ethnic heterogeneity increases the number
of political parties only when electoral district magnitude (in number of seats) is sufficiently
large. Our re-analysis indicates that the authors’ claims cannot be supported by a procedure
that sets the FWER at 90%, and are only partially supported by a procedure that sets the
FDR at 90%.

SFor a variant of this procedure involving assigning differential weights to different kinds of hypotheses,
see Spahn and Franco (2015).

6As an example of this procedure, Braumoeller (2004, p. 814) recommends dropping a small and statis-
tically uncertain interaction term in his reanalysis of Schultz (1999).
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Interaction terms and the multiple comparison problem

We begin by considering the following question: when we aim to assess the marginal effect
of x on y (Jy/0x) at different values of a conditioning variable z, how likely will at least one
marginal effect come up statistically significant by chance alone? In the context of linear
regression, Brambor, Clark and Golder (2006) recommend (i) estimating a model with z, z,
and zz terms, then (ii) plotting the estimated dy/0z from this model for different values of
z along with 95% confidence intervals. If the Cls exclude zero at any z, they conclude that
the evidence rejects the null hypothesis that dy/dxz = 0 for this value of z (Brambor, Clark
and Golder, 2006, pp. 75-76). Figure 1 depicts sample plots for continuous and dichotomous
z variables; the 95% confidence interval excludes zero in both examples (for values of z $ 4
in the continuous case, and for both z = 0 and 1 in the dichotomous case), and so both
samples can be interpreted as evidence for a statistical relationship between x and y.

Our goal is to assess the false positive rate of this test procedure—that is, the proportion
of the time that this procedure detects a statistically significant dy/dx for at least one value
of z when the null hypothesis that (J0y/0x|z) = 0 is true for all z. If the false positive

rate is greater than the nominal size of the test, «, then the procedure is overconfident:

the confidence interval covers (0y/dx|z) = 0 for all z less than (1 — «) proportion of the

for-all z—with-probability {1 — a)-when-this-nullistrue. In the case of the Brambor, Clark

and Golder (2006) procedure, the question is whether the 95% Cls in Figure 1 exclude zero
for at least one value of z more or less than 5% of the time under the null hypothesis that
(Oy/0x|z) = 0 for all values of z.

As most applied researchers know, when a t-test is conducted—e.g., for a coefficient or
marginal effect in a linear regression model—the « level of that t-test is only valid for a single

t-test conducted on a single coefficient or marginal effect.” It is not valid for simultaneously

"Incidentally, this statement is also true for a test for the statistical significance of the product term
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testing the statistical significance of multiple coefficients. Consider the example of a simple

linear model:

k
Elylzy, .. m] =5 =Y B
1=1

If a researcher conducts two t-tests on two different 5 coefficients, there is usually a greater
than 5% chance that either or both of them comes up statistically significant by chance alone
when o = 0.05. In fact, if a researcher enters k variables that have no relationship to the
dependent variable into a regression, the probability that at least one of them comes up

significant (in statistically independent tests) is:

Pr(at least one false positive) = 1 — Pr(no false positives)
k
= 1- H (1 —Pr (Bl is st. sig.|f; = 0))
i=1
= 1-(1—-0a)

so if the researcher tries five t-tests on five irrelevant variables, the probability that at least
one of them will be statistically significant is &~ 22.6%, not 5%. This is an instance of the
multiple comparison problem; the problem is associated with a long literature in applied
statistics (Lehmann, 1957a,b; Holm, 1979; Hochberg, 1988; Rom, 1990; Shaffer, 1995).

The same logic applies to testing one irrelevant variable in k different samples. Indeed, the
canonical justification for frequentist hypothesis testing involves determining the sampling
distribution of the test statistic, then calculating the probability that a particular value of
the statistic will be generated by a sample of data produced when the null hypothesis of the
test is true. Thus, if a researcher takes a particular sample data set and randomly divides it
into k subsamples, the probability of finding a statistically significant effect in at least one
of these subsamples by chance is also 1 — (1 — a)k when the null of no relationship is true

and the hypothesis tests are statistically independent.

coefficient in a statistical model with interaction.



Interaction terms create a multiple comparison problem: the case

of a dichotomous interaction variable

Interacting two variables in a linear regression model effectively divides a sample into sub-
samples, thus creating the multiple comparison problem described above. This is a well-
recognized problem in the context of analysis of variance, where textbooks recommend mul-
tiple comparison adjustment when examining the marginal effect of one treatment condition
whose effect is moderated by another treatment (e.g., Kutner et al., 2004, Section 19.9). The
simplest and most straightforward example is a linear model with a continuous independent

variable z interacted with a dichotomous independent variable z € {0, 1}:
Elyle, 2] = § = fo+ ot + Boz + Pz (1)

A researcher wants to know whether x has a statistically detectable relationship with y, as
measured by the marginal effect of # on Ely|z, z] from model (1): 0y/0x. Let ME, be
shorthand notation for dy/0z and ]\/J\Eio be shorthand notation for (0y/0z|z = 2j), where
zp is any possible value of z. Because x is interacted with z, this means that the researcher

needs to calculate confidence intervals for two quantities:

8@ B B _——0 s
9. 1) = ME. = B.+5 (3)
o = - x T Tz

These (pointwise) confidence intervals can be created by doing any of the following: (i) by
analytically calculating var (]\@2) and var (]\7[\Ei) using the variance-covariance matrix of
the B estimates, (ii) by simulating draws of B out of the asymptotically normal distribution
of 3 and constructing simulated confidence intervals of (2) and (3), or (iii) by bootstrapping
estimates of B via repeated resampling of the data set and constructing confidence intervals

using the resulting 3 estimates.



Common practice, and the practice recommended by Brambor, Clark and Golder (2006),
is to report the estimated statistical and substantive significance of the relationship between
x and y at all values of the interaction variable z. Unfortunately, the practice inflates the
probability of finding at least one statistically significant ]\/4\E;0 A model with a dichotomous
interaction term creates two significance tests in each of two subsamples, one for which z = 0
and one for which z = 1. This means that the probability that at least one statistically
significant ]\7[\Ez0 will be found and reported under the null hypothesis that ME? = ME! =0

1s:

Pr(false positive)
—0 —1
— Pr KMEOC is st. sig.|ME = 0) v (MEZ is st. sig.|ME! = 0)}
—0 —1
— 1-Pr {ﬂ ((MEx is st. sig.|ME® = 0) v (MEx is st. sig.|ME! = 0))]

= 1-Pr [(]\7752 is not st. sig.|ME? = O) A (]\/475315 is not st. sig.|ME} = 0)}

If the two marginal effects (and their associated statistical significance tests) in the second
term are unrelated, as when the sample is split into two based on the value of z and a

regression separately estimated on each subsample, then we can rewrite this as:

Pr (false positive)

—0 —1
= 1- (Pr <MEx is not st. sig.|MEY = 0) * Pr (MEx is not st. sig.|ME} = 0))

where M E? is the true value of Jy/0x when z = zy. If the test for each individual marginal

effect has size «, this finally reduces to:
Pr(false positive) = 1 — (1 — a)? (4)

The problem is immediately evident: the probability of accidentally finding at least one
statistically significant ]\//[E’zo is no longer equal to a. For a conventional two-tailed o = 0.05,

this means there is a 1 — (1 — 0.05)? = 9.75% chance of concluding that at least one of the



marginal effects is statistically significant even when ME? = ME! = 0. Stated another
way, the test is less conservative than indicated by «. The problem is even worse for a
larger number of discrete interactions; if z has three categories, for example, there is a
1 — (1 —0.05)3 ~ 14.26% chance of a false positive in this scenario.

To confirm this result, we conduct a simulation analysis to assess the false positive rate for
a linear regression model. For each of 10,000 simulations, 1,000 observations of a continuous

dependent variable y are drawn from a linear model:
y=02+4+u

where u ~ ®(0,1). Covariates x and z are independently drawn from the uniform distribution
between 0 and 1, with z dichotomized by rounding to the nearest integer. By construction,
neither covariate has any relationship to y; that is, the null hypothesis that M E? = M E?° =

0 is correct for all values of zg and xy. We then estimate a linear regression of the form:
9= Bo+ Bix + Bz + Bpr2

and calculate the predicted marginal effect ]\/4\Ei0 for the model when z = 0 and 1.
The statistical significance of the marginal effects ]\/4\Ez0 is assessed in three different
ways. First, we use the appropriate analytic formula to calculate the variance of ]\//[E’zo using

the variance-covariance matrix of the estimated regression; this is:
var (]\/4\Ezo> = var (Bw) + (20)* var (sz) + 22y cov <Bx, B:pz)

This enables us to calculate a pointwise 95% confidence interval using the critical ¢-statistic
for a two-tailed a = 0.05 test in the usual way. Second, we simulate 1000 draws out of
the asymptotic (multivariate normal) distribution of f for the regression, calculate ]\ﬁio at

zo = 0 and 1 for each draw, and select the 2.5th and 97.5th percentiles of those calculations

10



to form a 95% confidence interval at each value of zy. Finally, we construct 1000 bootstrap
samples (with replacement) for each data set, estimate B in each bootstrap sample, calculate
]\//[\E;O at zo = 0 and 1 using the B from each bootstrap sample, and use the 2.5th and 97.5th
percentiles of the calculated marginal effects to construct a 95% confidence interval at each
value of zg.

The results for a model with a dichotomous z variable are shown in Table 1. The table
shows that, no matter how we calculate the standard error of the marginal effect, the prob-
ability of a false positive (Type I error) is considerably higher than the nominal o = 0.05

and close to the theoretical expectation for statistically independent tests.

Continuous interaction variables

The multiple comparison problem and resulting overconfidence in hypothesis tests for marginal
effects can be worsened when a linear model interacts a continuous independent variable x

with a z variable that has more than two categories. For example, an interaction term

between x and a continuous variable z implicitly cuts a given sample into many small sub-

samples for each value of z in the range of the sample. By subdividing the sample further,

we create a larger number of chances for a false positive.

To illustrate the potential problem with overconfidence in models with more categories
of z, we repeat our Monte Carlo simulation with statistically independent x and z variables
using a three-category z € {0,1,2} (where each value is equally probable) and a continuous
z € [0,1] (drawn from the uniform distribution) instead of a dichotomous z. Bootstrapping
is computationally intensive and yields no different results than the other two processes when
z is dichotomous; we therefore only assess simulated and analytic standard errors for the 3
category and continuous z cases. The results are shown in Table 1.

As before, the observed probability of a Type I error is far from the nominal o probability
of the test. A continuous z tends to have a higher false positive rate than a dichotomous

z (= 14% compared to ~ 10% under equivalent conditions), and roughly equivalent to a

11



Table 1: Overconfidence in Interaction Effect Standard Errors of M E, = dy/0x*

# of Calculation

z categories Method Type I Error
Simulated SE 9.86%
9 categories Analytic SE 9.45%
gort Bootstrap SE 10.33%
Theoretical 9.75%
Simulated SE 14.20%
3 categories Analytic SE 13.93%
Theoretical 14.26%
continuous Simulated SE 14.51%
Analytic SE 13.75%

*The reported number in the “Type I Error” column is the percentage of the time that a statistically
significant (two-tailed, a = 0.05) marginal effect Oy/dx for any z is detected in a model of the DGP
from equation (1) when 8, = 8, = 84> = 0. Type I error rates calculated via simulated, analytic,
or bootstrapped SEs using 10,000 simulated data sets with 1,000 observations each from the DGP
y=02+u, u~®0,1); z ~ U[0,1], z € {0,1} with equal probability (2 categories), z € {0, 1,2}
with equal probability (3 categories), and z ~ U|0, 1] (continuous). For analytic SEs, se (]\/J\Ei,o) =

\/var (&) + (20)2 var (sz> + 2zpcov (/3}, sz> and the 95% Cl is <Bz + 3xz20) +1.96%se (]\//[75?)
Simulated SEs are created using 1000 draws out of the asymptotic (normal) distribution of A for

the regression, calculating ]\/4\Ei0 for each draw, and selecting the 2.5th and 97.5th percentiles of
those calculations to form a 95% confidence interval at each value of zy. Bootstrapped SEs are
created using 1000 bootstrap samples (with replacement) for each data set, estimating § in each

bootstrap sample, calculating ]\/4\Ei0 using the B from each bootstrap sample, and using the 2.5th
and 97.5th percentiles of the calculated marginal effects to construct a 95% confidence interval at
each value of zy. Theoretical false positive rates for discrete z are created using expected error rates
for independent tests from the nominal « value of the test as described in equation (4).

12



three-category z.

Statistical interdependence between marginal effects estimates

In the section above, we assumed that marginal effects estimates (and related statistical
significance tests) at different values of z are uncorrelated. But if the significance tests of
]\//[\EZ and ]\/4\Ei are related when z is dichotomous, we would expect correlation between
the statistical significance of marginal effects estimates when (for example) z and z are
themselves correlated, or when (5, and (.. are stochastic and correlated. In this case, the

probability of a false positive result is:

Pr (false positive)

—0 —1
— 1-Pr KMEw is not st. sig.| ME? = 0) A (MEI is not st. sig.| ME! = 0)}

If (]\ﬁz is not st. sig.|MEY = O) and (]\ﬁi is not st. sig.|ME; = 0> are perfectly corre-
lated, then we expect the joint probability that both occur to be equal to either individual
probability that one occurs (1 — «) and therefore Pr (false positive) =1 — (1 —«a) = a. In
that case, the individual tests have correct size. As their correlation falls, the joint probabil-
ity that both occur falls below (1 — «) as the proportion of the time that one occurs without
the other rises.®

To illustrate the effect of correlated x and z on marginal effects estimates, Table 2 shows
the result of repeating the simulations of Table 1 with varying correlation between the x

and z variables. When z is dichotomous,? it appears that correlation between x and z is

not influential on the false positive rate for M E,; the false positive rate is near 9.8% (our

8In the event that the statistical significance of one marginal effect were negatively associated with the

other—that is, if J\ﬁi were less likely to be significant when J\ﬁi is significant and vice versa—then the
probability of a false positive could be even higher than that reported in Table 1. We believe that this is
unlikely to occur in cases when [ is fixed, as our results in Table 2 indicate that a wide range of positive
and negative correlation between x and z does not produce false positive rates that exceed those of Table 1.

9Correlation between the continuous z and dichotomous z was created by first drawing = and a continuous

p

. . . 1
z* from a multivariate normal with mean zero and VCV = [ b1

D(z*|u=0,0=0.5).

} , then choosing z = 1 with probability

13



Table 2: Overconfidence in Interaction Effect Standard Errors of M E, = dy/0x*

Type I Error (Analytic SE)

continuous 2z

Daz binary z uniform normal
0.99 9.91% 7.29% 5.28%
0.9 9.26% 11.80% 6.42%
0.5 9.81% 14.06% 8.42%
0.2 9.78% 13.82% 8.87%

0 9.83% 13.69% 8.68%
-0.2 10.0% 13.60% 8.39%
-0.5 10.0% 13.81% 8.22%
-0.9 9.75% 11.57% 6.52%
-0.99 9.73% 7.61% 5.01%

*The reported number in the “Type I Error” column is the percentage of the time that a statistically
significant (two-tailed, a = 0.05) marginal effect Oy/dx for any z is detected in a model of the DGP
from equation (1) when B, = B, = B, = 0. Type I error rates are determined using 10,000
simulated data sets with 1,000 observations each from the DGP y = 0.2 4+ u, u ~ ®(0,1). When z
is continuous, = and z are either (a) drawn from a multivariate distribution with uniform marginals
L p

1

and a multivariate normal copula with mean zero and VCV = [ 1 (column “uniform”), or

L p
1

“normal”). When z is binary,  and z* are drawn from the bivariate normal with mean zero and

(b) drawn from the bivariate normal distribution with mean zero and VCV = { } (column

1
statistical significance: se (]\/4\Eio) = \/Var (Bz> + (z0)2 var (sz) + 2zpcov <3x, sz> and the 95%

Cl is (ﬁ} 4 szzo> +1.96 % se (ME;)

1
VCV = [ p p ] and Pr(z = 1) = ®(z*|p = 0, 0 = 0.5). Analytic SEs are used to determine

14



theoretical expectation from Table 1) for all values of p,.. This may be because the dichoto-
mous nature of z creates a situation analogous to a split sample regression, wherein ]\/J\Ei is
quasi-independent from ]\/4\E2 despite the correlation between x and z. This interpretation is
supported by the observed correlation between ¢-statistics for ]\/4\EZ and ]\ﬁi in our simula-
tion, which never exceeds 0.015 even when |p,.| > 0.9. We conclude that it may be possible
for ]\ﬁz and ]\ﬁi to be correlated in a way that brings the false positive rate closer to «,
but that simple collinearity between x and a dichotomous z will not produce this outcome.

The results with a continuous z are more interesting. We look at two cases: one where
x and z are drawn from a multivariate distribution with uniform marginal densities and a
normal copula!® (in the column labeled “uniform”), and one where x and z are drawn from
a multivariate normal'! distribution (in the column labeled “normal”). We see that the false
positive rate indeed approaches the nominal o = 5% for extreme correlations between x and
z. Furthermore, we also see that the false positive rate when p,. = 0 is about 8.7%; this is
lower than the 13.69% false positive rate that we see in the uniformly distributed case (which
is comparable to the 14.51% false positive rate that we observed in Table 1). It therefore
appears that the false positive rate for marginal effects can depend on the distribution of x

and 2.12

0This is accomplished using rCopula in the R package copula. The normal copula function has mean

zero and VCV = [ Loy
p 1

1 The multivariate normal density has mean zero, VCV = 1 T .

120f course, when the correlation between z and z gets very large (|p| > 0.9), the problems that accompany
severe multicollinearity may also appear (e.g., inefficiency); we do not study these problems in detail.

15


justi
Cross-Out




justi
Cross-Out

justi
Cross-Out


17


justi
Cross-Out

justi
Cross-Out


= aft—20)
= 005090

18


justi
Cross-Out

justi
Cross-Out


Thorough testing of possible hypotheses: underconfidence-or over-

confidence?

Golder and Milton (2012) (hereafter BGM) recommend thoroughly testing all of the possible

marginal effects implied by a statistical model. For a model like equation (1), that means
looking not only at dy/dx at different values of z, but also at dy/0z at different values of x.
Their reasoning is that ignoring the interaction between dy/0z and z allows researchers to

ignore implications of a theory that may be falsified by evidence:

...the failure to make additional predictions about how the effect of z varies with
the value of x, and to evaluate them with a second marginal effect plot, means
that scholars often ignore evidence that can be extremely valuable for testing
their theory. As a result, they either understate or, more worryingly, overstate

the support for their theories (653).
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However; it is vital to note that following BGM’s suggestion will also make it more likely

that at least one marginal effect will appear as statistically significant by chance alone. The
reason for this is relatively straightforward: testing a larger number of hypotheses means
multiplying the risk of a single false discovery. In short, we contend that BGM are correct
when testing a single theory by examining its multiple predictions as a whole, but caution
that analyses that report any statistically significant findings separately could be made much

more susceptible to false positives by this procedure.

What now? Determining and controlling the false posi-
tive rate for tests of interaction

The goal of this paper is evolutionary, not revolutionary. We do not argue for a fundamental
change in the way that we test hypotheses about marginal effects estimated in an interaction
model—viz., by calculating estimates and confidence intervals, and graphically assessing
them—but we do believe that there is room to improve the interpretation of these tests.
Specifically, we believe that the confidence intervals that researchers report should reflect an
intentional choice. We suggest threq best practices to help political scientists achieve this

goal.
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Suggestion 1: do not condition inference on the interaction term,

as it does not solve the multiple comparison problem

A researcher’s first inclination might be to fight the possibility of overconfidence by condi-
tioning inference on the statistical significance of the interaction term. That is, for the case

when z is binary:

~ —0 A~ —1 A~ ~
1. If 5, is statistically significant: calculate M E = 3, and M E, = B,+ 3., and interpret

the statistical significance of each effect using the relevant 95% CI.

2. If B, is not statistically significant: drop zz from the model, re-estimate the model,
—0 — 1 .
calculate ME, = ME, = (., and base acceptance or rejection of the null (that

x?

ME, = 0) on the statistical significance of B;,

Braumoeller (2004, p. 814), one of the foundational pieces in the political science literature
concerning the analysis of interacted relationships, uses this procedure in reanalyzing work
originally published by Schultz (1999). However, this procedure results in an excess of false
positives for ]\7[\Ex The reason is that a multiple comparison problem remains: the procedure
allows two chances to conclude that dy/0x # 0, one for a model that includes zz and one
for a model that does not.

Monte Carlo simulations reveal that the overconfidence problem with this procedure is
substantively meaningful. We repeated the analysis of Table 1 with a binary z € {0, 1} under
the null hypothesis (that (0y/0x|zy) = 0 for all z), conditioning inference on the statistical
significance of the interaction term. This procedure results in a 8.17% false positive rate
when a = 0.05 (two-tailed); the false positive rate is 9.60% when z is continuous.'® This is
less overconfident than the Brambor, Clark and Golder (2006) procedure using ]\7[\EI only,
which resulted in =~ 10% false positive rates, but still larger than the advertised o value.
Therefore, we cannot recommend this practice as a way of correcting the overconfidence

problem.

15These numbers are calculated using simulation-based standard errors, as described in Table 1.
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Suggestion 2: use tests designed to minimize false discoveries and
..
In cases where a researcher believes that the over- exunderconfidence of traditional hypoth-

esis test procedures may be decisive to a result (i.e., when results are at the margin of some

threshold for statistical significance), s/he can use an alternative test procedure in order

to control the probability of a false positive (when overconfidence is a potential problem)

section—we-will-discuss-each-procedure-inturn. In brief, for overconfidence we recommend
adapting the Benjamini and Hochberg (1995) procedure to control the false discovery rate.

can be implemented using our R library, interactionTest.

Overconfidence corrections for estimated marginal effects

When a multiple comparison problem creates the danger of excess false discoveries, the liter-
ature supports two broad approaches to the problem. The first approach involves controlling
the false discovery rate (FDR), or the number of rejected null hypotheses that are false as a
proportion of the total number of statistically significant results (Benjamini and Hochberg,
1995, pp. 291-292). In the context of testing the statistical significance of ]\7[\Ez at multiple
values of z, the FDR is the proportion of statistically significant values of ]\/J\Ez for which
the null is actually true (i.e., ME? = 0) in repeated tests. The second approach involves
controlling the familywise error rate (FWER), or the proportion of the time that a set of
multiple comparisons (a “family” of hypothesis tests) will produce at least one false rejection
of the null hypothesis (Abdi, 2007, pp. 2-4). For testing ]\/4\E; at multiple values of z, the

FWER is the proportion of the time (in repeated tests) in which at least one ]\ﬁi is statis-
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tically significant when the true M EZ = 0. In general, a test that sets the FWER at some
value is a more conservative procedure than a test that limits the FDR to the same value:
a single rejection of any hypothesis where the null is true in a set of multiple comparisons
raises the FWER, whereas the FDR allows a fixed level of false positives as a proportion of
all statistically significant results. Consequently, procedures that control the FWER tend to
be less powerful than those which control the FDR (Benjamini and Hochberg, 1995, p. 290).

A researcher can control the FDR for interacted relationships by adapting the procedure
of Benjamini and Hochberg (1995, p. 293-294; see also Spahn and Franco, 2015). For
a categorical interaction variable z with m categories, their procedure suggests that the
researcher should rank order each of the p-values, py for k € {1...m}; p; is the smallest p
value and p,, is the largest, with k& the rank index. Then, find the largest rank, k = k*,
that satisfies pp < a%. The researcher then rejects the null hypothesis for all ]\//[E:f from
7 = 1...k* at level «; this procedure ensures that the FDR is no larger than «, though it can
(in some cases) be smaller (see Theorem 1 in Benjamini and Hochberg, 1995).1° To visually
depict which marginal effects are statistically significant, a researcher can use the critical
t-statistic t* corresponding to a% when constructing a 95% CI using 8 =+ t* * se (]\/475;0) at all
values of zp. Note that this procedure also imposes a weak limit on the FWER: when all null
hypotheses are true, i.e. (Jy/dz |z = z9) = 0 for all values of zy, the FDR is equivalent to
the FWER (Benjamini and Hochberg, 1995, p. 291).

Put another way, this procedure orders the p-values for all relevant values of z, and
determines how many rejections of the null hypothesis can be made such that all p-values for
the rejected hypotheses are less than the value of a multiplied by k—ﬂ; The % multiplier is a
Bonferroni-type adjustment for multiple comparisons; this multiplier ‘deflates’ o to account
for the joint probability of at least one false positive when m-many tests are conducted

(Benjamini and Hochberg, 1995, p. 293). The innovation of Benjamini and Hochberg (1995)

60ur explanation of the Benjamini and Hochberg (1995) procedure borrows from the surprisingly good
description available on Wikipedia (as of 8/21/2015), which also contains an excellent summary of the
false discovery rate and its relationship to the multiple comparison problem. This page is available at
https://en.wikipedia.org/wiki/False_discovery_rate.
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is to shift the statistic of interest to the proportion of rejected null hypotheses for which
the null is true (instead of the probability of at least one rejection). This allows us to
throw out highly statistically insignificant results from consideration in declining order of
p-value, starting with & = m, until we find £*. As each subsequent p-value is discarded
and k gets smaller, the size target (a%) to which all remaining p-values are compared also
gets smaller. The process stops when all p-values are less than the deflated size target,
oz’fn—*, which is then used to find a critical ¢-statistic. This critical t-statistic, t*, can then be
used to construct marginal effects plots with confidence intervals visually similar to those of
Brambor, Clark and Golder (2006); if a researcher uses these CIs to test multiple hypotheses,
at most « proportion of the rejected null hypotheses will be false; the FDR is controlled at
a. If k¥ =1, the Bonferroni and Benjamini-Hochberg deflation factors are identical. The
procedure to find an appropriate FDR-controlling ¢* for marginal effects calculated from
an interaction model is included as a part of the new interactionTest R library that we
developed for this paper.

For controlling the FWER, Kam and Franzese (2007, pp. 43-51) recommend conducting
a joint F-test to determine whether ]\/4\E; # 0 for any value of z when interaction between
x and z (or other variables) is suspected. For a simple linear DGP with two variables of

interest, this means running two models:

Bo + Bu + Bz + Bustz

1. 9

Then, the researcher can use an F-test to see whether the restrictions of model (2) can be

rejected by the data. If so, the researcher can proceed to construct, plot, and interpret ]\/J\Ez

using the procedure described in Brambor, Clark and Golder (2006).17

17A joint F-test of coefficients is a direct test for the statistical significance of 93/0x = By + Byzz against
the null that 5, = S;, = 0. For a generalized linear model with a non-linear link, this relationship between
coeflicients and marginal effects is not direct. Therefore, an F-test for restriction in these models may not
correspond to a test for the statistical significance of marginal effects for the same reason that the statistical
significance of coefficients in non-interaction relationships in a GLM does not necessarily indicate the sta-
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Table 4: FDR and FWER control results for M E, = 0y/0x*

FDR FWER (F-test)
continuous z continuous z
Pzz binary z uniform normal binary z uniform normal
0.99 0.0498 0.0294 0.0432 0.0487 0.0343 0.0277
0.9 0.0478 0.0319 0.0359 0.0468 0.0470 0.0296
0.5 0.0495 0.0365 0.0322 0.0448 0.0538 0.0376
0.2 0.0513 0.0323 0.0290 0.0476 0.0480 0.0375
0 0.0525 0.0345 0.0339 0.0488 0.0517 0.0396
-0.2 0.0509 0.0320 0.0309 0.0478 0.0494 0.0378
-0.5 0.0504 0.0353 0.0318 0.0493 0.0531 0.0366
-0.9 0.0502 0.0313 0.0344 0.0481 0.0462 0.0286
-0.99 0.0503 0.0324 0.0413 0.0482 0.0339 0.0226

*The reported number in the “FDR” column is the percentage of the time that a statistically
significant (two-tailed, a = 0.05) marginal effect Qy/Jx for any z is detected in a model of the DGP
from equation (1) when 8, = 8, = B, = 0 using the procedure of Benjamini and Hochberg (1995).
The reported number in the “FWER” column is the percentage of the time that a statistically
significant (two-tailed, a = 0.05) marginal effect dy/0zx for any z is detected in a model of the
DGP from equation (1) when B, = 8, = Bz, = 0 and simultaneously where an F-test for the joint
significance of 3, and (., has been passed (two-tailed, o = 0.05); this procedure is recommended
by Kam and Franzese (2007). Figures are determined using 10,000 simulated data sets with 1,000
observations each from the DGP y = 0.2 + u, u ~ ®(0,1). When z is continuous, = and z
are either (a) drawn from a multivariate distribution with uniform marginals and a multivariate
L p

normal copula with mean zero and VCV = [ 1

} (column “uniform”), or (b) drawn from the

L p

bivariate normal distribution with mean zero and VCV = [ 1

} (column “normal”). When z is

1
Pr(z = 1) = ®&(2*|p = 0, 0 = 0.5). Analytic SEs are used to determine statistical significance:

se (]\/J\Ei()) = \/V&I" (B$> + (zo)2 var (Bm) + 2zpcov <B$,3zz) and the 95% CI is (335 -+ Bmzo> +
tFDR * se <J\/4\Ei0> for the FDR and (Bx + szZ()) +1.96 % se (]\ﬁj}) for the FWER. The value of

trpr is determined by following the Benjamini and Hochberg (1995) procedure for controlling the
false discovery rate (as described in the text), then setting tppr to the t-statistic with a critical
value of a% for the appropriate value of k; for continuous values of z, m is equal to the number of
points zp at which we assess 0y/0x|zp (we use 11 points in our simulations).

1
binary, z and z* are drawn from the bivariate normal with mean zero and VCV = [ p p ] and
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We used both of these procedures on the simulated data from Table 2; in each case, we
set the target false positive rate (FDR or FWER) of the procedure to 0.05, two-tailed. The
results are shown in Table 4. Because all the null hypotheses are true in the simulated data
set (that is, ]\//[Ezo = 0 for all zj), both the procedures should yield roughly equivalent results

(because the FDR in this case is equivalent to the FWER). Indeed, as the table indicates,

both procedures are effective at limiting false rejections of the null to a probability of < 5%.

tistical significance of marginal effects (Berry, DeMeritt and Esarey, 2010). In-this-case—the-bootstrapping
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Application: Rehabilitating “Rehabilitating Duverger’s

Law” (Clark and Golder, 2006)

After publishing their recommendations for the proper hypothesis test for a marginal effect in
the linear model with interaction terms, Clark and Golder (2006) went on to apply this advice
in a Comparative Political Studies paper examining the relationship between the number of
political parties in a polity and the electoral institutions of that polity. Their reassessment
of Duverger’s Law applies the spirit behind the simple relationship between seats and parties
predicted by Duverger to specify a microfoundational mechanism by which institutions and
sociological factors are linked to political party viability. Based on a reanalysis of their
results with the methods that we propose, we believe that some of the authors’ conclusions
are more uncertain than originally believed.

Clark and Golder (2006) expect that ethnic heterogeneity (a social pressure for political
fragmentation) will have a positive relationship with the number of parties that gets larger

as average district magnitude increases. Specifically, they propose:

“Hypothesis 4: Social heterogeneity increases the number of electoral parties
only when the district magnitude is sufficiently large” (Clark and Golder, 2006,
p. 694).

We interpret their hypothesis to mean that the marginal effect of ethnic heterogeneity on
the number of electoral parties should be positive when district magnitude is large, and
statistically insignificant when district magnitude is small. To test for the presence of this
relationship, the authors construct plots depicting the estimated marginal effect of ethnic
heterogeneity on number of parties at different levels of district magnitude for a pooled sample
of developed democracies, for 1980s cross-sectional data (using the data from Amorim Neto
and Cox (2007)), and for established democracies in the 1990s. In all three samples, they
find that ethnic heterogeneity has a positive and statistically significant effect on the number

of parties once district magnitude becomes sufficiently large.
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Figure 2 displays our replication of the marginal effects plots from Clark and Golder
(2006). We show threg different confidence intervals: (i) the authors’ 90% confidence intervals

(using a conventional ¢-test),

0wl i othnic ] ) i

the “prediction-corrected” CI; and (i) a 90% CI
constructed using the FDR-controlling procedure of Benjamini and Hochberg (1995). We
also calculate and show the results of a joint F-test as prescribed by Kam and Franzese
(2007).

None of the joint F-tests for the statistical significance of the marginal effect of ethnic
heterogeneity yield one-tailed p-values less than 0.1. Additionally, FDR-controlling 90%
confidence intervals include zero across the entire range of district magnitude for the sample of
established democracies in the 1990s. However, in the other two samples, the coverage of the
90% FDR confidence intervals confirms the authors’ original results, albeit with somewhat
greater uncertainty. In addition, the authors’ original findings are statistically significant
and consistent with their pattern of theoretical predictions when-we-employ-the prediction-
corrected-90%-confidence-intervals.

In summary, our analysis indicates that the authors’ claims are most strongly supported
by a combination of the empirical information they collect with the prior theoretical pre-
diction of an unlikely pattern of results. Their results cannot be supported by a procedure
that sets the FWER at 90%, and are only partially supported by a procedure that sets the
FDR at 90%. We believe that this re-interpretation of the authors’ findings is important
for readers to understand in order for them to grasp the strength of the results and the

assumptions upon which these results are based.
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Conclusion

The main argument of this study is that, when it comes to the contextually conditional
(interactive) relationships that have motivated a great deal of recent research, the Brambor,
Clark and Golder (2006) procedure for testing for a relationship between = and y at different
values of z does not effectively control the probability of a false positive finding. The prob-
ability of at least one relationship being statistically significant is higher than one expects
because the structure of interaction models divides a data set into multiple subsets defined

by z, each of which has a chance of showing evidence for a relationship between x and y

when none really exists.

these—events—collectivelyevenmore unlikely. The consequence is that false positive rates
may be considerably higher e+Jlower-than researchers believe when they conduct their tests.

Fortunately, we believe that specifying a consistent false positive rate for interactive

relationships is a comparatively simple matter of following a-few; rules of thumb:

1. do not condition inference about marginal effects on the statistical significance of the

product term;

2. if a relationship is close to statistical significance under conventional tests, use proce-
dures that control the overall false discovery rate and/or familywise error rate, such

as the sequential test procedure of Benjamini and Hochberg (1995) or the joint F-test

recommended by Kam and Franzese (2007); and
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Our new interactionTest software package for R makes it easy for applied researchers to

control the false positive rate when they create marginal effects plots in the mode of Brambor,

Clark and Golder (2006),

None of these recommendations constitutes a fundamental revision to the way we con-
ceptualize or depict conditional relationships. Rather, they allow us to ensure that evidence
we collect is compared to a counterfactual world in a controlled fashion and consistent with
the hypothesis tests that we perform in other situations. All of our recommendations can
be implemented in standard statistical packages; we hope that researchers will keep them
in mind when embarking on future work involving the assessment of conditional marginal

effects.
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link funetion G.—Caleulate M. ; M. —and-their standard-errors for multiple values
of 2z and zg using the fitted-model.
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