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Abstract

The Hausman (1978) test is currently recommended by many textbooks in panel
data analysis to decide whether fixed effects are required for management of unit het-
erogeneity or whether more efficient random effects can be used instead (e.g., Cameron
and Trivedi, 2005, pp. 717-719; Wooldridge, 2002, pp. 288-291). However, this test
has been criticized in simulation studies for both its overrejection of false nulls and un-
derwhelming power (Clark and Linzer, 2012; Sheyatanova, 2004). We propose a more
direct test: determine whether the estimated unit intercepts from a fixed effects models
are correlated with the unit mean of the model’s regressors using an F -test. Simula-
tion results indicate that, when a large number of observations per unit are available,
this approach is more powerful and has better size characteristics than the Hausman
test and the Mundlak (1978) procedure. Furthermore, models chosen by the F -test
procedure have lower bias and are more efficient than models chosen via the Hausman
test.

∗We thank Jude Hays, Mark Pickup, Vera Troeger, and participants at the 2017 Methods Meeting at
the University of Houston and the 2017 Time and Space conference at Texas A&M University for helpful
comments and suggestions on earlier drafts of this paper.



Introduction

The analysis of time series cross section (TSCS) data is complicated by the potential pres-

ence of unmodelled unit heterogeneity. These complications include bias in estimated effect

sizes and artificially deflated uncertainty. Random or fixed effects models can mitigate these

problems, but whether it is best to choose a random or fixed effects model depends on facts

unknown to the researcher. Using a random effects model when a fixed effect model is ap-

propriate results in biased estimates of effect size; using a fixed effects model when a random

effects model is appropriate reduces power and makes it impossible to study influences that

only vary between (and not within) units (Wooldridge, 2002, Chapter 10).

When choosing whether to use a fixed or random effects model for the analysis of panel

data, standard textbooks recommend using the Hausman (1978) test to guide the decision

(e.g., Cameron and Trivedi, 2005, pp. 717-719; Wooldridge, 2002, pp. 288-291). The

Hausman test compares the estimated coefficients from a fixed effect model, β̂FE, to those

from a random effects model, β̂RE. As given by Wooldridge (2002, p. 289, eq. 10.78), the

Hausman test statistic is:

H =
[
β̂FE − β̂RE

]′ [
v̂ar(β̂FE)− v̂ar(β̂RE)

]−1 [
β̂FE − β̂RE

]
(1)

This statistic is asymptotically distributed χ2 with degrees of freedom equal to the rank of

β̂FE under the null hypothesis that the random effects estimator is consistent (Hausman,

1978, p. 1256, Theorem 2.1).

Intuitively, Hausman’s approach is to compare the behavior of an inefficient, but consis-

tent estimate
(
β̂FE

)
to that of a possibly inconsistent estimate

(
β̂RE

)
; if they are similar,

then both are achieving the same limiting distribution and we can infer that β̂RE must be

consistent. This test therefore indirectly tests the condition that there is no correlation

between the regressors and the unit effects, which is necessary in order for random effects

1



models to be consistent.

Unfortunately, prior studies have shown that the Hausman test yields deficient results in

practice. Sheyatanova (2004) conducted a thorough simulation study of how the Hausman

test performs in panel data, finding that:

Hausman test over-rejects the null hypothesis if performed based on its asymp-

totical critical values, when Swamy and Arora and Amemiya methods are used

for estimating the random effects model. The Nerlove method of estimation leads

to extreme under-rejection of the null-hypothesis.

As another example, Clark and Linzer (2012, pp. 15-18) conduct a simulation study that

shows that the Hausman test frequently fails to reject the null hypothesis when there is a

moderate level of correlation between a regressor and the unit effects.

An Alternative to the Hausman Test

Rather than use the indirect approach of Hausman (1978), we propose to directly test the

assumption of correlation between the regressors and the unit effects. Consider an illustrative

data generating process (DGP):

ygi = β0 + βxxgi + βzzgi + γg + εgi (2)

where g indexes units (groups) from g ∈ {1...G}, i indexes observations within a group from

i ∈ {1...Ng}, γg is the unit effect specific to group g, x and z are independent variables, and

ε is an error term. If there is correlation between x and γ, then πx 6= 0 in:

γg = π0 + πxxgi + πzzgi + ψgi (3)

2



where ψgi is an error term.

We can test the hypothesis that πx = πz = 0 directly if we can obtain feasible estimates

of γg. In many cases, a consistent fixed effects model produces these estimates, γ̂g; for

example, an ordinary least squares dummy variable model often produces these estimates as

coefficients on the unit specific dummy variables. Thus, we propose:

1. Run a fixed effects (FE) model predicting ygi using all regressors (in the example, xgi

and zgi.

2. If the estimated fixed effects γ̂g from the FE model are jointly statistically significant,

save these fixed effects and proceed; otherwise, drop the fixed effects and estimate a

pooled model.1

3. Run an auxiliary regression:

γ̂g = η̂0 + η̂xx̄g + η̂z z̄g + ζ̂g (4)

where v̄g represents the estimated within-group mean for variable v; for example:

x̄g =
1

Ng

Ng∑
i=1

(xgi) (5)

4. Conduct an F -test of the hypothesis that η̂x = η̂z = 0.

Note that we propose γg be regressed against group mean values of the independent variables,

not their individual-level values (as in equation 3). We make this choice because the error

terms of observations inside of a unit g may be correlated with one another in ways that are

1If γg = 0 for all g ∈ {1...G}, small deviations between the true β and the estimated β̂ could lead to a
false finding of correlation between γ̂g and any covariate with strong unit clustering. Testing for the joint
statistical significance of γ̂g serves to block this possibility. Thanks to Jude Hays and Vera Troeger for
pointing out this possibility. See footnote 4 for more details.
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not removed by the fixed effects model in step 1. For example, suppose that in the DGP of

equation (2):

γg ∼ φ(µ = 0, σ = 1) (6)

µxg ∼ U [0, 1] (7)

xig ∼ φ(µ = µxg , σ = 1) (8)

zig ∼ φ(µ = 0, σ = 1) (9)

A least squares dummy variable model would, under appropriate conditions, be able to

accurately recover estimates of γg. However, although a regression of γg against xig (a model

of equation (3)) would accurately recover no relationship, the error term of this regression

ψgi would be correlated with with xgi by construction and consequently the standard errors

would be biased.

Even in a situation like this one, we may be able to assume independence between units;

this is similar to the logic that motivates use of cluster-robust standard errors in many applied

studies (Liang and Zeger, 1986; Rogers, 1993). By definition, γ̂g does not vary within units;

therefore, ηx = πx and ηz = πz. However, ζg will be uncorrelated with x̄g when ψig is

correlated with xig. Thus, the group-level regression of equation (4) will be unbiased when

a model of equation (3) would be biased.

In the auxiliary regression of equation (4):

γ̂g = η̂0 +
J∑
j=1

η̂jx̄j(g) + ζ̂g

the fact that a standard F -test for {η̂1, η̂2, ..., η̂J} is valid (given homoskedasticity of ζg) is

supported by a textbook econometric proof (see Wooldridge, 2002, Lemmas 3.8-3.9 on pp.

43-44 and Theorem 4.2 on p. 55). We might be concerned that ζg is heteroskedastic; for
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example, different group sizes Ng may lead to differences in the accuracy of γ̂g across groups

g.2 When ζ is heteroskedastic, heteroskedasticity-robust versions of the F -statistic must be

used instead of the standard F -test (Wooldridge, 2002, p. 57-58). We examine scenarios that

might create heteroskedasticity in our simulation analysis; we also assess the effectiveness

of heteroskedasticity-robust versions of our F -test procedure, the Hausman test, and the

Mundlak model.

Simulation Evidence

To assess the ability of the Hausman test, F -test, and the Mundlak (1978) procedure to

determine the need for a fixed effects model in an applied setting, we conduct simulation

study of panel data with and without correlation between regressors and unit effects.3 All

simulations were performed using R 3.3.3 (R Core Team, 2017).

Data Generating Process (DGP) and Test Procedures

The baseline simulated DGP for our simulation study is:

ygi = β0 + βxxgi + βzzgi + βwwgi + γg + εgi (10)

Our study included simulations for G ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} and for Ng ∈

{5, 10, 15, 20, 30, 40, 50}. We studied R = 1000 simulated data sets for each combination of

G and Ng. We set β0, βx, and βz all equal to zero and βw = 1. Both the group effect γ

and the error term ε are drawn from the normal distribution with a mean of 0 and standard

deviation equal to 1.

2Note that differential measurement error could only create a problem for the efficiency of η̂ estimates if
the accuracy of γ̂g was associated with x̄g.

3The basic data generating process and code base for these simulations is taken from the replication
code for Esarey and Menger (2017); consequently, much of the text describing the DGP is similar to the
corresponding text of that paper.
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The regressor x is drawn from the normal density φ(µ = µxg , σ = 0.1); that is, groups

share a common mean for their x values, µxg , that is different from the mean x for other

groups. When there is no correlation between the unit effect and the regressor, µxg ∼ U [0, 1];

in this case, a random effects model is appropriate. When there is correlation between the

unit effect and regressor, such that a fixed effect model is required, µxg = 0.35γg. The other

regressors z and w are both drawn from independent normal densities with a mean of 0 and

standard deviation of 1.

After creating a data set with G groups and Ng observations per group, we estimate

both fixed and random effects models using the PLM package of Croissant and Millo (2008);

these models include x, z, and w as regressors. We use the results of these models to run a

Hausman test using the phtest command and that the test rejects the null (that a random

effects model is appropriate) whenever p < 0.05. We also implemented the Mundlak (1978)

procedure of adding mean values of the regressors to a random-effects model:

ygi = β̂0 + β̂xxgi + β̂zzgi + β̂wwgi + β̂µ(x)x̄g + β̂µ(z)z̄g + β̂µ(w)w̄g + ε̂gi (11)

We conduct a Wald test of the joint significance of β̂µ(x), β̂µ(z), and β̂µ(w) and rejected the

null (that the random effects model is appropriate) whenever the associated p < 0.05.

For our proposed F -test procedure, we save the estimated γ̂ from our fixed effects model4

and run a second regression predicted γ̂ using the unit average values of x, z, and w, corre-

4Because we knew that all models in our test included meaningful unit-specific heterogeneity and to
ensure a proper comparison with the Hausman test, we did not test the joint significance of the unit effects γ̂
in our simulations. However, as a direct assessment of whether the problem pointed out in 1, we conducted
an auxiliary test setting Ng = 5, G = 50 and varying the standard deviation of γg between 0 and 0.2.
The results are featured in Appendix Figure 8. Our analysis found persistent overrejection of a false null
hypothesis by the F -test as the standard deviation of γg → 0; the test rejected at a rate of around 10%
despite a nominal α = 0.05. By contrast, both the Hausman and Mundlak procedures rejected the null at
rates closer to 5%.
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sponding to the following model:

γ̂g = η̂0 + η̂xx̄g + η̂z z̄g + η̂ww̄g + ζ̂g (12)

We then record the result of an F -test of the null hypothesis (α = 0.05) that ηx = ηz =

ηw = 0; this should be true whenever a random effects model is appropriate (i.e., there is no

correlation between unit effects and the regressors).

Size and Power Results

The main results of this study pertaining to the size and power of the three candidate

test procedures when Ng = 15 (i.e., 15 observations per unit) are shown in Figure 1. The

left panel of the figure assesses the size of each test (i.e., its propensity to reject the null

hypothesis that a random effects model is consistent when this null is true). The right panel

assesses the power of the test (i.e., the test’s ability to reject the null hypothesis when the

null is false and a random effects model is inconsistent).

The left panel indicates that only the F -test procedure rejects true null hypotheses at the

prescribed rate of α = 0.05 across all values of the number of units G when Ng = 15. The

Mundlak (1978) procedure rejects the null too often for small values of G, but eventually

approaches the correct rejection rate as G approaches 30. The Hausman (1978) test generally

rejects the null too often for all values of G.

The right panel in the figure shows that the F -tests has poor power characteristics for

a very small number of units, but quickly improves on this performance as G gets larger.

Indeed, the F -test is more powerful than the Hausman test for all values of G > 5 in our

study.

Figure 2 compares the performance of each test, but fixing G = 50 and allowing Ng to

vary between 5 and 50. As the figure shows, the quality of the F -test results is sensitive to the
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Figure 1: Test Size and Power from Cross-Sectional Data Simulations with Unit
Heterogeneity, Ng = 15

number of observations per unit. When the number of observations per unit is particularly

small (less than 15) but the number of units is large (50), the size of the F -test is above its

nominal α = 0.05 level (though it still performs better than the Hausman test for Ng > 5).

As expected from Figure 1, the Mundlak procedure does well in this environment.

Figure 3 provides insight into why the F -test struggles to maintain appropriate size in

certain situations; this Figure repeats the baseline simulations without correlation between

the unit effect and regressor (where the random effects model is appropriate), but fixes

Ng = 20 and varies Var [x] ∈ {0.025, 0.5}. As the figure shows, when Var [x] → 0 the

performance of the F -test drops off, sometimes substantially. The problem is that βx and

γg become harder to separately identify as Var [x] → 0; when Var [x] = 0 we can no longer

include x in a model of equation (2) because x and the fixed effects are perfectly collinear.

This evidently makes the F -test more prone to choose the fixed effects estimator.
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Figure 2: Test Size and Power from Cross-Sectional Data Simulations with Unit
Heterogeneity, G = 50
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Figure 3: Test Size and Power from Cross-Sectional Data Simulations with Unit
Heterogeneity and without Unit/Regressor Correlation, Varying Var [x], Ng = 20
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Bias and Efficiency Assessment

Although assessing the size and power of Hausman, Mundlak, and F -tests is important, the

underlying tension in making the choice between random and fixed effects models is a choice

between the possible bias of a random effects model versus the inefficiency of a fixed effects

model. Thus, one critical measure of the quality of any of these tests is the extent to which

they maximize the efficiency and minimize the bias of β̂ estimates.

Figure 4b assesses the efficiency and bias of models chosen by each candidate test when

each unit contains a limited amount of data (Ng = 15). The left panel (Figure 4a) shows

the mean standard error of the estimated β̂x in equation (10) for the model chosen by each

test when there is no correlation between γg and xgi. In this situation, the random effects

estimator is unbiased and the most efficient choice. The right panel (Figure 4b) shows the

mean bias in β̂x for the model chosen by each test when γg and xgi are corrlated; in this

scenario, random effects is biased. Note that for the Mundlak procedure, we always assess

the bias and efficiency of β̂x estimates for the saturated model in equation (11) regardless

of whether the coefficients on the unit mean variables are jointly statistically significant; a

“saturated” model includes unit-mean variables for all regressors in the model. We uncon-

ditionally assess the Mundlak procedure in order to determine whether a researcher gains

any advantage over fixed effects models by automatically including all unit mean terms in a

random effects model.

The figure clearly illustrates that random effects is the optimal model to choose when

there is no correlation between unit heterogeneity and a regressor, while the fixed effects

model is the optimal choice when such correlation exists. The Hausman model chooses the

random effects model too frequently when the fixed effects model is required (Figure 4b),

resulting in substantial bias that diminishes very slowly as the number of units G increases

to 50. The F -test procedure, however, is almost as efficient as choosing random effects by

default (in Figure 4a) and yet nearly as good at minimizing bias compared to choosing fixed
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Figure 4: Bias and Efficiency from Cross-Sectional Data Simulations with Unit
Heterogeneity, Ng = 15

effects by default (Figure 4b) for all but the smallest number of clusters (when G = 5, the

F -test does even worse than the Hausman test). A saturated Mundlak model is essentially

equivalent to a fixed effects model in terms of both efficiency and bias consequences.

Figure 5 performs the same analysis as Figure 4, but setting the number of units G = 15

and allowing the number of observations per unit Ng to vary. Both the Hausman and F -test

models perform essentially the same when efficiency is assessed (Figure 5a), but the F -test

minimizes bias much more effectively than the Hausman test (Figure 5b) are assessed. As

before, the Mundlak model yields equivalent consequences to using a fixed effects model by

default.
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Figure 5: Bias and Efficiency from Cross-Sectional Data Simulations with Unit
Heterogeneity, G = 15

Heteroskedasticity-robust testing

It is common in applied data sets for Ng to vary between clusters; as noted before, this is a po-

tential concern if it creates heteroskedasticity in the error term ζg in the equation for (4). We

therefore examined the performance of the Hausman, Mundlak, and F -tests in an environ-

ment with widely varying clusters. To accomplish this, we altered our simulated DGP to cre-

ate data sets with an equal distribution of clusters with each of Ng ∈ {10, 25, 50}. We varied

the total number of clusters in the simulated data set to be G ∈ {6, 9, 12, 15, 18, 21, 24, 27, 30}

(i.e., all numbers divisible by three). We then implemented all the same test procedures as

before with no adjustment for heteroskedasticity.

The results are shown in Figure 6. It is immediately apparent that the substantive

interpretation of this figure is similar to that of Figure 1, which depicts the same results for

a DGP with identical cluster sizes. From this result, it appears that cluster size heterogeneity
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Figure 6: Test Size and Power from Cross-Sectional Data Simulations with Unit
Heterogeneity and Varying Unit Sizes, Ng ∈ {10, 25, 50}

alone is not sufficient to create worrisome heteroskedasticity in the F -test procedure.

However, using heteroskedasticity-robust procedures for the Hausman test, F -test, and

Mundlak (1978) procedures does have some impact on the performance of the procedures

we study. To show this, we repeated our initial simulation (in Figures 1 and 2) using

alternative forms of the Hausman test, F -test, and Mundlak procedure. For the Hausman

test, we used the augmented regression variant of the Hausman test procedure described in

Wooldridge (2002, p. 332)5 that enables us to use HC3-type heteroskedasticity-consistent

variance-covariance matrices in the comparison of the fixed and random effects models. For

comparison with our prior results that employ the usual χ2 version of the Hausman test, we

also estimate the augmented regression Hausman test without the HC3 VCV. Finally, we

use HC3 VCVs when calculating the F -statistics associated with our F -test statistic and the

Mundlak (1978) test.

5See also Millo (2012).
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The results of this reanalysis are shown in Figure 7, which mirrors the earlier Figure 1.

The left panel (Figure 7a) shows that using robust standard errors tends to harm the size

performance of all the tests, but in different ways. For the F -test, the heteroskedasticity-

robust statistics tend to reduce the size for very small numbers of units (G = 5); that is,

the F -test now rejects the null less than α = 0.05 proportion of the time when the null is

true. The test’s power is negatively impacted for small G as well (as shown in the right

panel, Figure 7b). Meanwhile, both the Hausman and Mundlak procedures becomes more

overconfident for small values of G; that is, they rejects the true null far more than 0.05

proportion of the time. The Hausman test’s false positive rate seems to converge toward

α = 0.05 after G = 20 or so, an improvement over the performance of the χ2 version of

the test, but the Mundlak test’s size performance is as bad or worse than the Hausman

test at every number of units. The Hausman test’s power is roughly comparable under

heteroskedasticity-robust statistics to its power using the χ2 version of the test.
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Figure 7: Test Size and Power from Cross-Sectional Data Simulations with Unit
Heterogeneity using HC3 VCV, Ng = 15
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Conclusion

Our simulation studies confirm earlier results (Sheyatanova, 2004; Clark and Linzer, 2012)

showing that the Hausman (1978) test struggles to maintain appropriate size and power

characteristics under realistic conditions. For social scientists, the upshot is that researchers

may find it difficult to make informed decisions about whether to use a fixed or random

effects model on any particular data set.

We find that an alternative F -test procedure outperforms both the Hausman test and

another test first suggested by Mundlak (1978). Moreover, it is simple to perform: re-

searchers need only regress the estimated unit effects (obtained by running a fixed effects

model) against the unit mean values of all independent variables; if an F -test rejects the null

hypothesis of no correlation between regressors and unit effects, then a fixed effects model is

required.

Our alternative is not without limitation: it relies upon a researcher’s ability to obtain

consistent estimates of the unit effects. This is not always possible. For example, it is trivially

true that correlation between the unit effects and any variable that does not vary within unit

cannot be assessed by our test. Our simulations also reveal that the F -test procedure can be

misleading when variables are included that are close to not varying within units. As another

example, estimating fixed effects in a probit model results in inconsistent estimates when

G → ∞ and Ng is constant (Wooldridge, 2002, p. 484); our test would be inappropriate in

this scenario, at least when Ng is small.

However, when our procedure is feasible, it outperforms both the Hausman and Mundlak

procedures in both controlling size and maximizing power in our simulations. It also tends

to produce more efficient and less biased estimates compared to these other procedures, at

least when Ng is large. Furthermore, although researchers may not be able to tell whether

the Hausman test will be effective in their data set, we believe that the limitations of our
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procedure are straightforward enough such that an analyst will know whether it is appropriate

to apply.
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Appendix: Assessment of Spurious Correlation between

Unit Mean Regressors and Unit Effects γ
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Figure 8: Test Null Rejection Rates from Cross-Sectional Data Simulations with Unit
Heterogeneity, Ng = 5, G = 30
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