Convergence Checking and Model Fit Assessment

Wednesday, November 1, 2017 2:51 PM

Questions motivating this lecture:

- 1. How do I know that the samples of some parameter θ generated from my computational sampling procedure (e.g., Gibbs sampler) are really representative of the unknown distribution $f(\theta)$?
 - a. Another way of asking the same question: how do I know that my Gibbs sampler has achieved a limiting distribution equivalent to $f(\theta)$?
 - b. We've asked this question before, but now we'll tackle a closely related question: what can I do about it if I suspect that my sampler is not quickly converging to $f(\theta)$?
- 2. Presuming that my sampler is working well, how can I tell whether a model is a good fit to the data set?
 - a. Are there reasons to suspect (meaningful) misspecification of the parametric structure of the model?
- 3. If I have multiple plausible models that might explain the data-generating process, how do I decide which one is the most credible model?

Convergence Diagnostics

Wednesday, November 1, 2017

2:57 PM

- · So you're running a Gibbs sampler...
- How do you assess whether the sampler is producing samples of θ that are representative of $f(\theta)$?
- We've assessed this question before, in the lecture dealing with "Practical MCMC for estimating models"
 - Visual assessment of the Markov Chain
 - Geweke diagnostic (geweke.diag)
 - o Raftery and Lewis diagnostic (raftery.diag)
 - Heidelberger diagnostic (heidel.diag)
- There is another diagnostic to consider: the Gelman and Rubin diagnostic (gelman.diag), sometimes called \hat{R} or the "potential scale reduction factor"
 - o According to Gelman and Hill, "for each parameter, the possible reduction in the width of its confidence interval, were the simulations to be run forever" with a target of less than 1.1_
 - Mathematically (according to BDA3), for a parameter of interest ψ with m = the number of chains and n = the number of samples per chain, we can write (noting that i indexes iterations in a chain and j indexes chains)...

$$\bullet W = \frac{1}{m} \sum_{j=1}^{m} s_j^2 \qquad \text{influidance}$$

$$\bullet s_j^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\psi_{ij} - \bar{\psi}_{\cdot j})^2 \qquad \text{where } c$$

$$\bullet \bar{\psi}_{\cdot j} = \frac{1}{n} \sum_{i=1}^{n} \psi_{ij} \qquad \text{for the product of } j$$

•
$$s_j^2 = \frac{1}{n-1} \sum_{i=1}^n (\psi_{ij} - \bar{\psi}_{ij})^2$$
 Varance or clear

$$\bullet \quad \bar{\psi}_{\cdot \cdot} = \frac{1}{m} \sum_{j=1}^{m} \bar{\psi}_{\cdot j}$$

$$\circ B = \frac{n}{m-1} \sum_{j=1}^{m} (\bar{\psi}_{.j} - \bar{\psi}_{.j})^{2}$$
 between variables

$$\widehat{var}^+(\psi|y) = \frac{n-1}{n}W + \frac{1}{n}B$$

$$\circ \quad \widehat{R} = \sqrt{\frac{\widehat{var}^+(\psi|y)}{W}} \qquad \frac{\mathsf{W}}{\mathsf{W}}$$

- Note that as $n \to \infty$, $\hat{R} \to 1$ (because of how $\hat{var}^+(\psi|y)$ is constructed)
- Bad news: sometimes all these convergence diagnostics yield misleading results.

•	Bad news: sometimes all these converg	gence diagnostics	s yield misleading results.
---	---------------------------------------	-------------------	-----------------------------

• Let's take a look at an example using the radon dataset often used in Gelman and Hill (*ARM*); the example comes from Thomas Wiecki (twiecki.github.io)

Methods to Speed Convergence

Thursday, November 2, 2017 1:27 PM

Generic problem: when two parameters in a Bayesian model are very closely correlated, it can cause
the sampler to encounter problems exploring the space

ο Example: when studying a distribution $f(\theta) \sim \Phi(\mu, \tau)$ for a vector-valued θ (for example, where θ_i , i=1...m is a bunch of random intercepts or slopes for m-many units i), it can be the case that the sampler has trouble fully exploring the θ space for very small values of σ / large values of τ (i.e., when precision is very high or variance is very low)

 $\circ~$ Several ways to break this correlation

• One idea: Write $\theta_o \sim \Phi(0,1)$, $\theta_\theta = pow(\tau, -2)$ and $\theta = \mu + \sigma_\theta \theta_o$

• Instead of writing $\beta_0 + \eta_i(0, \tau_\eta) + \zeta_i(0, \tau_\zeta)$, can write $\eta_i(\beta_0, \tau_\eta) + \zeta_i(0, \tau_\zeta)$

group time

Posterior Predictive Densities

Thursday, November 2, 2017 2:02 PM

- Assuming that your model is sampling properly... how do we determine whether it's the right model?
- One way: check to see that <u>simulated</u> data generated from the model is consistent with the actual data from the data set
 - Idea: simulate data from $f(y|\theta)$ using the samples of θ that you drew, and then compare this to the empirical distribution $f_E(y)$ to assess similarity
 - \circ This is similar to what you might do in a linear regression comparing \hat{y} to the observed y (or, equivalently, \hat{u} to y)

Model Comparison

Thursday, November 2, 2017 2:10 PM

• If I have more than two models, how do I know which model is the best fit to my data?

Deviance: $\delta = -2 \ln L$, where $L = f(y|\hat{\theta})$ or the likelihood of the data given the Bayes estimates of the parameters $\hat{\theta} = E[\hat{\theta}_i]$ 6: Bayes estimente

- Deviance Information Criterion:
 - $DIC = 2\delta + 2p_{DIC}$

- Akaike Information Criterion: $AIC = \delta + 2k$ k =the length of θ (typically δ is computed using the MLE $\hat{\theta}$, not the Bayes estimates)
- Bayesian Information Criterion: $BIC = \delta$ f $k \ln n$, where n is the sample size (typically δ is computed using the MLE $\hat{\theta}$, not the Bayes estimates)
- Bayes Factor for model comparison (hard to compute in many cases):

$$\circ \ BF = \frac{\int f(\theta_1|M_1)f(y|\theta_1,M_1)}{\int f(\theta_2|M_2)f(y|\theta_2,M_2)}$$
• Out-of-sample prediction / Cross-validation

- - Gibbs/Stochastic Variable Selection and the "Bayesian LASSO"
 - o Double-exponential distribution on the precision of a parameter

pr(Mly) & pr(ylm) pr(Mi)

West set date"