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Abstract

Cluster-robust standard errors (as implemented by the eponymous cluster op-
tion in Stata) can produce misleading inferences when the number of clusters G is
small, even if the model is consistent and there are many observations in each cluster.
Nevertheless, political scientists commonly employ this method in data sets with few
clusters. The contributions of this paper are: (a) developing new and easy-to-use Stata
and R packages that implement alternative uncertainty measures robust to small G,
and (b) explaining and providing evidence for the advantages of these alternatives,
especially cluster-adjusted t-statistics based on Ibragimov and Müller (2010). To il-
lustrate these advantages, we reanalyze recent work by Grosser, Reuben and Tymula
(2013), Lacina (2014), and Hainmueller, Hiscox and Sequeira (2015) whose results are
based on cluster-robust standard errors.

Introduction

The cluster-robust standard error (CRSE) first proposed by Liang and Zeger (1986) has

become ubiquitous in applied quantitative work in political science since it was implemented

in Stata by Rogers (1993). The reasons for its ubiquity are straightforward: the problems that

clustered data present for statistical analysis are well-known to political scientists (Moulton,

1986, 1990), and CRSEs are extremely simple to estimate and useful when added to a research
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design involving fixed effects estimation (Bertrand, Duflo and Mullainathan, 2004). But it is

not as widely understood that using CRSEs without regard to their limitations can produce

very misleading inferences. Research has shown that CRSE confidence intervals are too

narrow and false positive rates1 are substantially in excess of the nominal size of a statistical

hypothesis test when the number of clusters in a data set is small (Green and Vavreck 2008;

Cameron, Gelbach and Miller 2008; Harden 2011; Angrist and Pischke 2009, Chapter 8).

There is no universal cutoff for how many clusters is “small;” prior research tends to put the

threshold of elevated concern somewhere around 40 clusters, although this threshold can be

much higher in some circumstances (MacKinnon and Webb, 2017). Nevertheless, we find

that political scientists are still very likely to employ CRSEs in this situation. We speculate

that CRSEs are still used in data sets with few clusters because (a) no alternatives are as

easy to implement in Stata and R, and (b) the limitations of CRSEs are not sufficiently

publicized in political science.

Our paper makes two contributions to the political science literature. Our primary con-

tribution is to make it easy for substantive researchers to use alternatives to the CRSE as a

normal part of their workflow. Toward this end, we create and make available pre-packaged

routines for estimating cluster-adjusted t-statistics (CATs) (Ibragimov and Müller, 2010),

pairs cluster bootstrapped t-statistics (PCBSTs) (Bertrand, Duflo and Mullainathan, 2004;

Cameron, Gelbach and Miller, 2008; Harden, 2011), and wild cluster bootstrapped t-statistics

(WCBSTs) (Cameron, Gelbach and Miller, 2008) for common models. These routines are in

the clusterSEs package for R and the clustse and clusterbs ado files for Stata.2

We also explain why these alternatives perform better than CRSEs in data sets with a

small number of clusters and provide simulation evidence in favor of this argument. In our

simulations, we find that CATs are usually more effective (and always at least as effective)

1A false positive occurs when a true null hypothesis is rejected.
2Note that the cluster wild bootstrap was already introduced in a Stata .do file by Doug

Miller (http://www.econ.ucdavis.edu/faculty/dlmiller/statafiles/), and implemented by Judson Caskey
(https://sites.google.com/site/judsoncaskey/data) in a straightforward package. We therefore use Caskey’s
code for WCBSTs in Stata, and provide our own code for R.
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at limiting false positives compared to CRSEs, PCBSTs, and WCBSTs. CATs are also

often more powerful at detecting true positives (rejections of the null hypothesis when the

null is false) compared to alternatives. Although CATs cannot be estimated in any cluster

with unidentified coefficients (e.g., without variation on the dependent variable), we provide

both an analytic argument and simulation evidence that simply dropping these clusters

allows CATs to be effectively used. Finally, although random effects models have better size

and power characteristics in our simulation compared to any cluster adjustment alternative

when the model is correctly specified, cluster adjustments do substantially better when the

assumptions of the random effects model are not satisifed.

To substantively illustrate how CRSEs can be misleading in data sets with few clusters,

we re-examine three recently published analyses by Grosser, Reuben and Tymula (2013),

Lacina (2014), and Hainmueller, Hiscox and Sequeira (2015) using alternative approaches.

Grosser, Reuben and Tymula (2013) observed that candidates for office in an experiment

lower their proposals for redistribution in response to increased donations from a rich voter;

our reanalysis with CATs finds that this relationship is more uncertain than shown by the

original CRSE-based analysis (and in some cases is statistically insignificant). In Lacina

(2014), we find little evidence in the replication dataset for a link between political repre-

sentation and civil unrest in India when using PCBSTs; this is contrary to Lacina’s original

conclusion derived using CRSEs. Our reanalysis of the evidence in Hainmueller, Hiscox and

Sequeira (2015) generally supports the authors’ conclusion that consumers are willing to pay

more for products with a “fair trade” label; however, we find that there is substantially more

uncertainty in the magnitude of this relationship using CATs or PCBSTs than the original

analysis using CRSEs would indicate.
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The analysis of clustered data: problems and solutions

Data in political science is frequently grouped; as one example, survey observations of in-

dividual respondents are often clustered by geographical units (counties, states, countries,

etc.). We expect that respondents inside of a cluster are related to one another in complex

ways that may be difficult to understand or model. For statistical analysis, this poses the

difficulty that the random component of observed outcomes cannot be treated as indepen-

dently and identically distributed within a cluster. Accounting for this statistical dependence

between observations is a well-known problem in the statistical literature. In datasets where

the data exhibits some dependency between observations in the same cluster, ignoring this

dependence can greatly underestimate the true standard errors for parameters of interest

when this clustering structure is associated with the independent variable (Moulton, 1986,

1990). This can lead to researchers falsely rejecting the null hypothesis of a statistical sig-

nificance test too frequently, resulting in an excess of published papers with conclusions that

are not supported by the data.

There are many approaches to dealing with clustered structure in a data set of interest.

When a fixed effects model is desired (e.g., as a part of a difference-in-difference research de-

sign), it is common to correct the standard errors for residual cluster dependency (Bertrand,

Duflo and Mullainathan, 2004). In this scenario, researchers commonly employ the cluster

option in Stata (developed by Rogers, 1993). This procedure is a modification of White’s

(1980) robust standard errors, altering the White “sandwich estimator” to allow for de-

pendence between observations inside a cluster. CRSEs were described in the context of

generalized estimating equations by Liang and Zeger (1986), and were implemented in Stata

by Rogers (1993).3 The formula for the cluster-robust variance-covariance matrix in OLS

3See also Arellano (1987).
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regression is (Cameron and Miller, 2015, pp. 8-9):

varβ̂ = (X ′X)
−1

[
G∑
g=1

[
X ′gûgû

′
gXg

]]
(X ′X)−1 (1)

where β̂ are OLS estimates, G is the number of clusters, X is the N×m matrix of independent

variables (for N observations and m variables), and ûg is the vector of residuals yg − Xgβ̂

in cluster g. Theorem 2 in Liang and Zeger (1986, p. 16) demonstrates that, for models

with intra-cluster error dependence but inter-cluster independence, the maximum likelihood

estimator of β̂ is consistent and multivariate Gaussian as G → ∞; the covariance of this

distribution is consistently estimated by equation (1) as G→∞. The result also holds (with

suitable adjustment of equation (1)) for other GLM models.

Since the introduction of cluster robust standard errors to social science research, a series

of papers have emphasized their ability to obtain accurate measures of uncertainty (and

appropriately sized statistical significance tests) in a wide variety of scenarios (Liang and

Zeger, 1993; Donner, 1998; Williams, 2000; Klar and Donner, 2001; Kezdi, 2004; Bertrand,

Duflo and Mullainathan, 2004). Of course, CRSEs are not a cure-all. Differences between the

typical maximum likelihood standard errors and CRSEs can indicate harmful misspecification

problems that are not addressed by adjusting the variance-covariance matrix (Hardin and

Hilbe, 2003, pp. 33-34). In these cases, CRSEs can be used as a check on the appropriateness

of the model’s specification (King and Roberts, 2014). CRSEs can also be useful in cases

where explicitly modeling some aspect of the data generating process is problematic but

a simplified model is still consistent (see, e.g., Cameron and Trivedi, 2005, pp. 147-150).

For example, Bertrand, Duflo and Mullainathan (2004) report that parametrically modeling

residual serial correlation results in excess false positive rates for placebo treatments in a

Monte Carlo analysis of Current Population Survey data and simulated data; CRSEs are

more effective at limiting false positives in their study.4

4Another alternative to dealing with serial dependence, explicitly including a lagged dependent variable,
can be problematic if it creates “Nickell bias” due to the presence of fixed effects in the model (Nickell, 1981;
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Unfortunately, evidence reveals a major problem with using CRSEs in datasets that have

a small number of clusters: using CRSEs when the number of clusters is small can cause

models to find statistically significant relationships where no relationships actually exist.

That is, when only a small number of clusters are used in an analysis with clustered standard

errors, the CRSEs are biased downward (Mancl and DeRouen, 2001; Cameron, Gelbach and

Miller, 2008; Donald and Lang, 2007; Angrist and Pischke, 2009; Ibragimov and Müller, 2010;

Imbens and Kolesar, 2012). The CRSE procedure depends on an asymptotic justification

that the number of clusters G (and not the number of observations per cluster) approaches

infinity (Hansen, 2007; Cameron, Gelbach and Miller, 2008). This can be seen in equation (1),

where the center summation happens over the number of clusters G and not over the number

of observations N ; as a result, the accuracy and stability of the estimate relies on having

access to many clusters, not many observations, because consistency of the center summation

depends on G → ∞ (Cameron and Miller, 2015, pp. 7-9). Intuitively, if one has a data set

with N many observations in G many clusters but is unwilling to assume that observations

in different clusters are identically distributed, one is (in a sense) estimating standard errors

based on G many items of information. Consequently, any asymptotically-derived results for

the distribution of β̂ will not apply unless G is very large, and significance tests or confidence

intervals based on these asymptotically-derived distributions will be inaccurate when G is

small.

There is no hard-and-fast rule for how few clusters is too few for using CRSEs. The work

of Cameron, Gelbach and Miller (2008), Angrist and Pischke (2009), and Harden (2011)

suggests that data sets with fewer than about 40 clusters are at substantively elevated risk

of having downward-biased CRSEs. However, this threshold can vary under different cir-

cumstances; for example, simulations by MacKinnon and Webb (2017) indicate that CRSEs

can be problematic with as many as 100 clusters if the clusters have very different numbers

of observations.

Gaibulloev, Sandler and Sul, 2014; Beck, Katz and Mignozzetti, 2014).
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How often are CRSEs used with few clusters in Political

Science?

How often do political scientists use CRSEs in data sets with few clusters in published

quantitative work? To answer this question, we gathered data from four highly visible general

interest political science journals: American Political Science Review, American Journal of

Political Science, Journal of Politics, and International Studies Quarterly (hereafter known

by their initials). We examined the use of cluster robust standard errors in every published

article starting with the most recent issue (as of July 2014) and going back four years; we

only go back four years to account for the fact that many of the articles highlighting the

undesirable small-sample properties of CRSEs were published in the mid- to late-2000s. For

each article, we recorded the subfield, whether CRSEs were used, the number of clusters,

and the number of observations. In the case of multiple models per article, we recorded the

article that used the fewest clusters.

Table 1 displays the summary statistics for each journal. Between 20-27% of articles

in each journal used CRSEs, with AJPS showing the highest prevalence. This journal also

displayed the highest rate of models with fewer than 40 clusters (7.54% of all articles and

27.94% of articles that used clustering). AJPS also had a substantial proportion of papers

with fewer than 20 clusters, representing 13.24% of all articles that used CRSEs. APSR and

JOP fare somewhat better, with between 3-5% of all articles using clustering in data sets

with fewer than 40 clusters (between 14-19% of all articles which used CRSEs). ISQ showed

the lowest rate of articles with fewer than 40 clusters at 1.57% (6.90% of CRSE articles),

but this journal showed the highest rate of models with an unknown number of clusters at

10.63% (46.55% of articles using CRSEs).
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What alternatives to CRSEs are available?

According to the prior literature on the subject, using CRSEs in a data set with a small

number of clusters is ill-advised. We focus on three alternatives for cluster-adjustment that

are relatively versatile and simple. These options are:

1. pairs cluster bootstrapped t-statistics (PCBSTs), variants of which are studied by

Bertrand, Duflo and Mullainathan (2004), Cameron, Gelbach and Miller (2008), and

Harden (2011)

2. wild cluster boostrapped t-statistics (WCBSTs), as proposed by Cameron, Gelbach

and Miller (2008)

3. cluster-adjusted t-statistics (CATs), based on the work of Ibragimov and Müller (2010)

and also studied by Canay, Romano and Shaikh (2014).

Our primary contribution is the creation of a streamlined statistical package for implementing

these alternative uncertainty estimators.5 The replication materials for this paper include

code for all these procedures for GLM and multinomial logit models in Stata and R; the

code is available at the CRAN repository for R (under library name clusterSEs) and the

SSC repository for Stata (under the names clustse and clusterbs).6 We describe the

principles behind each procedure in the main body of the text, providing technically detailed

step-by-step procedures for each one in an online appendix.

After describing these potential options and how their performance in data with a small

number of clusters may differ,7 we conduct a Monte Carlo analysis to evaluate their perfor-

mance in relation to CRSEs and the usual maximum likelihood standard errors (which we

refer to hereafter as “vanilla” standard errors). We also compare these techniques to a stan-

dard random effects model (Wooldridge, 2002, pp. 257-265); this allows us to compare the

5We thank an anonymous reviewer for suggesting this language.
6Note that our Stata software does not have an option for estimating CATs for multinomial logit models;

this is, however, available in our R software.
7See the online appendix for a more thorough analytic explanation of each approach’s performance in

data with few clusters.

9



performance of cluster-adjustment techniques to that of a potentially more efficient model

that is also potentially more sensitive to violations of its assumptions (Clark and Linzer,

2015).

Pairs cluster bootstrapped t-statistics (PCBSTs)

The pairs cluster bootstrapped t-statistic is a variation on the typical bootstrap procedure

that accounts for the clustered structure of data. A typical bootstrapping process draws a

bootstrap data set of size N with replacement from the original data set (also of size N),

estimates the model of interest on the bootstrap data set, saves a quantity of interest (such

as β̂) from this model, repeats the process K times for a large value of K, and then examines

the empirical distribution of K-many values of β̂k, k = 1 ... K. The bootstrap distribution of

β̂k will approximate the distribution of β̂ (Efron, 1979; van der Vaart, 1998, Chapters 19 and

23). If the bootstrapped quantity is β̂, its standard error can be estimated by the standard

error of the replicates; alternatively, a 95% confidence interval can be estimated using the

2.5th and 97.5th quantiles of β̂k.

The PCBST modifies this procedure (1) to sample clusters with replacement, rather than

individual observations with replacement, and (2) to sample the test statistic t = β̂/σ̂ instead

of β̂. The first modification to the usual bootstrap procedure is necessary to recognize that

observations within a cluster are not independently distributed and thus we cannot resample

at the level of the individual observation and still preserve the distribution of β̂. The second

modification is used because t is pivotal (its large-sample distribution does not depend on

the unknown true values of β and σβ̂) and therefore its performance in small samples can in

some cases be better than that for bootstrapping of non-pivotal statistics such as β̂ (Liu and

Singh 1987; Horowitz 1997). For calculating 95% confidence intervals, the 95th percentile

value of tz may be used as a part of the normal formula for confidence intervals, β̂± (t1−α) σ̂.

Thus, PCBSTs treat clusters rather than observations as the fundamental unit of anal-

ysis and implement the bootstrap at this level. Based on a Monte Carlo analysis, Harden

10



(2011) recommends that “state politics researchers use [the pairs cluster bootstrap] to con-

duct statistical inference with clustered data” (p. 224).8 Bertrand, Duflo and Mullainathan

(2004) study and apply pairs cluster bootstrapped t-statistics (which they call the “block

bootstrap”) and find that they are effective in controlling the size of hypothesis tests with

serially correlated panel data for a moderate number of clusters in a difference-in-difference

design, but produce excess false positives for a small number of clusters. However, they

use vanilla standard errors rather than CRSEs for the bootstrap replicates; Cameron, Gel-

bach and Miller (2008) shows that CRSE replicates perform better with a small number of

clusters.

Wild cluster bootstrapped t-statistics (WCBSTs)

Wild cluster bootstrapped t-statistics are similar to PCBSTs, but are based on the idea of

“wild bootstrapping” the residuals of a regression rather than bootstrapping observations

directly (Wu, 1986). The wild cluster bootstrap procedure relies on construction of error

terms ε̂ from the original linear model y = Xβ̂ + ε̂, then creating new bootstrap data sets

by sampling on clusters and assigning new values of the error term equal to the original

estimated error term multiplied by weights randomly selected from a set, such as the two-

point Rademacher weights {1,−1} (Liu, 1988).9 As with any bootstrapping technique, the

procedure relies on approximating the distribution of β̂ using repeated resampling of the

data and re-estimation of the model on the resampled data. But for WCBSTs, the model’s

estimated error terms are treated as the source of variation in the observations. Cameron,

Gelbach and Miller (2008, p. 425) conclude that “this [wild cluster] bootstrap works well

in our own simulation exercise and when applied to the data of Bertrand, Duflo and Mul-

lainathan (2004).” Note that this procedure depends on estimates of the residuals ε̂, and is

8It appears that Harden uses the standard error of β̂ estimates for hypothesis testing, rather than of the
pivotal t statistic, in his implementation of the procedure (Harden, 2011, pp. 227-229).

9See the discussion of WCBSTs in the online appendix for more information.
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therefore unsuited for GLM models with non-standard residuals (e.g., the probit).10

Cluster-adjusted t-statistics (CATs)

Cluster-adjusted t-statistics were first suggested as an approach to modeling clustered data

by Ibragimov and Müller (2010). Intuitively, the contribution of Ibragimov and Müller (2010)

(and the proofs in Bakirov and Szekely (2006) that underlie their work) is in determining the

small-sample properties for an estimator that accounts for intra-cluster dependence among

observations. This allows us to improve on the performance of CRSEs in a small number of

clusters, wherein the performance of the CRSE estimator is analytically unknown.

The key theoretical insight for CATs (as described in Ibragimov and Müller (2010) on

pp. 455-456, which we repeat here) comes in realizing that, when the number of observations

Ng in every cluster g is large and cluster-level estimates β̂g are (asymptotically) indepen-

dent, then for many common statistical estimators each cluster estimate β̂g should take an

asymptotic distribution (as Ng →∞) of:

√
Ng

(
β̂g − β

)
asym∼ Φ

(
0, σ2

g

)
(2)

This property flows from the well-known asymptotic properties of many estimators, including

and especially the OLS regression estimator and maximum likelihood estimator for GLM-

family models. Consequently, the vector of group-specific estimates β̂G takes the asymptotic

distribution (as Ng →∞ for all g ∈ {1, ..., G}):

√
N
(
β̂G − β

)
asym∼ Φ(0,ΣG) (3)

with N =
∑G

g=1Ng, β̂
T
G =

[
β̂1 ... β̂G

]
and ΣG = diag (σ1, ..., σG); the block-diagonal

nature of ΣG flows from the assumption that observations in clusters i and j are independent

10See Hu and Kalbfleisch (2000) for an application of the wild bootstrap to non-linear models via boot-
strapping of individual observations’ contribution to the score of a non-linear model.
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whenever i 6= j.11 Ibragimov and Müller (2010) use a formal proof from Bakirov and Szekely

(2006) to show that, under these conditions, a two-tailed t-test of the grand mean of cluster

estimates β̄G = (1/G)
∑G

g=1 β̂g against the null of β = 0 with G − 1 degrees of freedom is

valid for α = 0.05 for a two-tailed test with G ≥ 2 (pp. 455-458). Note that this property

does not necessarily hold for larger α, including and especially two-tailed α = 0.10; for this

reason, we recommend against using CATs for hypothesis tests with α > 0.05 or confidence

intervals below the 95% level. A small panel data simulation study by Ibragimov and Müller

(2010, p. 460) shows that their approach rejects a true null at close to the nominal level

for an α = 0.05 test, with better power characteristics than CRSEs or fixed effects with

standard errors based on Arellano (1987); however, this study examines only ten panels with

fifty observations each (G = 10, Ng = 50) and does not examine the performance of pairs

cluster or wild cluster bootstrapped standard errors. Another simulation study of time series

and difference-in-difference data conducted by Canay, Romano and Shaikh (2014) shows that

CATs can sometimes be too conservative (rejecting a true null at a rate less than the α level

of the test), although CATs’ power to reject false null hypotheses is still at least as good as

the alternatives the authors examined (which did not include either PCBSTs or WCBSTs).

In short, CATs involve simply running the target model separately in every cluster, saving

the β̂g estimates in each cluster, then calculating confidence intervals and test statistics using

the mean and variance of the collection of cluster-specific β̂g values. A t-statistic can be

calculated as t̂G = β̄G/ŝG, where β̄G is the mean of the cluster level coefficients and ŝG is

their estimated standard error. Note that the variance-covariance matrix of β̂ is recovered

in this procedure as the variance-covariance matrix of β̂g. This allows us to calculate 95%

confidence intervals as β̄G ± (tα,G−1) (ŝG); it also allows us to calculate standard errors on

interaction terms as prescribed by Brambor, Clark and Golder (2006). Note that β̄G and β̂

will often not be equivalent;12 therefore 95% CIs formed with this procedure will often not

11See equation (4) in Ibragimov and Müller (2010), p. 456.
12In an e-mail correspondence, Ulrich Müller indicated that β̄G and β̂ “have a complicated dependence

structure” that involves several factors, and that “nothing general can be said about their relationship.”
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be centered on β̂.

The method relies on β̂g existing for every value of g = 1 ... G. If there is no variation

in a limited dependent variable for one or more clusters such that a GLM model cannot

be estimated in that cluster, then CATs cannot be calculated. In an online appendix,

we analytically examine the conditions under which dropping these clusters preserves the

distribution of equation (3) so that the results of Ibragimov and Müller (2010) still apply;

as a rule of thumb, dropping unidentified clusters is acceptable when the probability of an

unidentified cluster is low or there is small heterogeneity in the probability of dropping a

cluster across plausible values of β̂g. We also perform Monte Carlo simulations estimating

CATs after dropping unidentified cluster coefficients to confirm this result.

More challengingly, CATs also cannot be estimated for any independent variables that

do not vary within the cluster. This limitation is not a problem for using CATs in a fixed

effects model where the fixed effect is at the same level as the cluster: the fixed effect simply

gets absorbed into the constant term without loss of generality. It is a problem when there

is a substantively relevant independent variable that does not vary within clusters and for

which we are interested in uncertainty in its relationship with the dependent variable. This

limitation of CATs is similar to the well-known proviso that fixed effects models cannot be

used with variables that do not vary within units.

Assessing techniques for the analysis of clustered data

We assess the performance of statistical significance tests using ordinary (vanilla) standard

errors, CRSEs,13 CATs, and PCBSTs in continous and binary dependent variable scenarios;

for continuous dependent variables, we also assess the performance of WCBSTs and linear

13CRSEs can differ in whether they use a multiplicative small sample correction, what kind of correction
they use, and in the number of degrees of freedom used for the t-density (Cameron and Miller, 2015). Our
programs use a multiplicative correction of G/(G− 1) and a t-density with G− 1 degrees of freedom; these
are the defaults for Stata’s cluster option when using maximum likelihood models.
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random effects (RE) models.14 For PCBSTs, we further compare using vanilla SE repli-

cates to CRSE replicates for calculating tk. We denote the dependent variable as y. We

are interested in the proportion of the time that correctly specified models reject the null

hypothesis of no relationship between y and x (an independent variable whose values are

correlated with the cluster structure), or y and z (an independent variable uncorrelated with

the cluster structure). For each type of dependent variable, we examine two subcases: one

where x and z have no relationship with y, and one where they do have a relationship. For

GLMs, the data generating process is:

ygi = f (βxxgi + βzzgi + βwwgi + γg + εgi)

where f (•) is the identity or probit link depending on the structure of the dependent variable;

i indexes observations and g indexes the group identity that forms the clustering structure

of the data. When x and z are unrelated to the data, βz = βx = 0 and the proportion of

the time that the null hypothesis of β = 0 is rejected is our measure of the false positive

rate. For dependent variables where x and z are related to the data, βx = βz = 0.25 and

the proportion of the time that the null hypothesis of β = 0 is rejected is our measure of the

true positive rate. βw = 1 in all cases. The unit effects are γg ∼ Φ(µ = 0, σ = 1), where Φ

represents the normal distribution. ε ∼ Φ(µ = 0, σ = 1) for continuous dependent variables

and = 0 for binary dependent variables. Correlation with the cluster structure is created by

drawing values for x ∼ Φ(µ = µg, σ = 1) where µg is shared by all members of cluster g; by

comparison, z ∼ Φ(µ = 0, σ = 1). µg ∼ U [1, 5] in these simulations; this implies that the

intra-cluster correlation coefficient for x is ρ =
(

1
12

(5− 1)2) / (1 + 1
12

(5− 1)2) ≈ 0.57. Note,

however, that there is no relationship between the common group error component γg and

the cluster-average value for x, µg; if this were true, then estimates of β̂ would be biased and

simply correcting the standard errors would be inappropriate.

14For vanilla SEs, CRSE, and RE models, ordinary t-tests are used to test the statistical significance of
the relevant coefficient. CATs, PCBSTs, and WCBSTs are used as described above.
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This data structure is a very close match to the structure of a typical random effects

model (Wooldridge, 2002, pp. 257-265). This gives us an opportunity to compare the

performance of linear link GLM with cluster-corrected standard errors to random effects

models for continuous dependent variables under ideal conditions for the RE model. In so

doing, we are able to examine the degree to which achieving accurate model specification

(as opposed to a robust approximation) improves size and power (King and Roberts, 2014).

Models without random effects are estimated using the glm function in R, while random

effects models are estimated using the lme4 package (Bates et al., 2014).

We also wish to examine cases where the RE model is not an ideal match, to compare the

performance of a somewhat misspecified RE model to fixed effects (FE) models with cluster-

adjusted SEs (Clark and Linzer, 2015). Accordingly, for continuous dependent variables,

we also generate data sets for which there is both (a) correlation between the value of the

regressor x and the group-level effect γg, specifically, µg = 1.5γg, and (b) serial correlation

inside of a cluster. To accomplish this, the observations inside each simulated cluster were

arranged in a temporal order, t = 1...T ; this replaces the individual indexing i. For each

group g and time t, we then set εgt = 0.9εg(t−1) + ψgt (with ψgt ∼ Φ(µ = 0, σ = 0.1))

and xgt = 0.9xg(t−1) + ωgt (with ωgt ∼ Φ(µ = µg, σ = 0.1). Note that each group’s x

comes from a distribution with a different mean.15 This data structure imitates the residual

serial correlation that is commonly encountered in difference-in-difference research designs

(Bertrand, Duflo and Mullainathan, 2004). Under these circumstances, we use the plm

package in R (Croissant and Millo, 2008) to add a fixed effect for g to models before correcting

the standard errors for clustering. There are adjustments to the random effects model that

could enable it to adapt to these scenarios (e.g., Beck and Katz, 1995; Bafumi and Gelman,

2006); we could also directly specify a model for the serial correlation. But the point of this

comparison is not to demonstrate that cluster-adjustment is always the best model—it often

isn’t—but to demonstrate that the cluster-adjustment procedure can be less efficient than a

15The smaller standard deviations for ω and ψ are calculated to give the (highly autocorrelated) distribu-
tions of ε and x standard deviations of 1.
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near-perfectly specified model but more robust to violations of accurate specification.

We also look at multinomial logit models:

Pr(ygi = 1) =
1

1 +
∑

J\1 exp(βxjxgi + βzjzgi + βwjwgi + γgj)

Pr(ygi = k) =
exp(βxkxgi + βzkzgi + βwkwgi + γgk)

1 +
∑

J\1 exp(βxjxgi + βzjzgi + βwjwgi + γgj)
for k > 1

where J ∈ {1, 2, 3} and the base category is 1. For other categories j ∈ {2, 3}, γgj ∼ Φ(µ =

0, σ = 1). When x and z are related to the dependent variable, βx2 = βz2 = 1 and βw3 = 1,

and βx3 = βz3 = βw3 = 0. µg ∼ U [−2, 2] in these simulations. When x and z are unrelated

to the dependent variable, we set βx2 = βz2 = βx3 = βz3 = 0, βw2 = 1, βw3 = −1.5, and

µg ∼ U [1, 5].16 We estimate these models using the mlogit package in R (Croissant, 2015).

The data are structured so that there are varying numbers of clusters G; we examine

cases with G ∈ {3, 6, 15, 21, 30, 60, 75, 90, 120}. In each case, all clusters had an equal

number of observations (40 observations per cluster). To save space, the main text discusses

results for continuous dependent variables in detail and only summarizes the binary and

multinomial results; these other results are detailed in an online appendix. We also conducted

supplemental simulations for the linear dependent variable where we divided the clusters so

that there are an equal number with 20, 40, and 60 observations; other researchers have

found that CRSEs can be more sensitive to small numbers of clusters when the cluster sizes

are unequal (MacKinnon and Webb, 2017). The qualitative findings of this analysis were

similar to those for analysis with equally sized clusters; we relegate the discussion of these

findings to an online appendix.

16In the multinomial simulation, the β values were chosen so as to provide some qualitative variation in y
across the substantively relevant variables.
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Simulation results for linear models without µg/γg correlation or

serial dependence

We begin with an assessment of size and power for a continuous dependent variable with no

correlation between µg and γg; these are shown in Figure 1. As the plots show, the ordinary

SEs produced by glm (referred to as vanilla SEs in the figure) produce excess false positives

for the cluster-correlated independent variable x when βx = 0. On the other hand, the same

SEs have a false positive rate for the cluster-uncorrelated variable z that is a good match

for the α = 0.05 value of the test. CRSEs produce excess false positives for G ≤ 30 for both

x and z but not for G ≥ 60. These results are consistent with the prior findings of Angrist

and Pischke (2009), Cameron, Gelbach and Miller (2008), and Harden (2011).17

PCBSTs offer better false positive performance than vanilla SEs or CRSEs for ≤ 21

clusters, but only when CRSE replicates are used. The proportion of rejected null hypotheses

is close to the nominal 5% value of the test when using the CRSE replicates, except for very

small numbers of clusters (where the rejection rate is lower than 5%). But this improvement

in false positive performance is offset by worse performance in the detection of true positives,

which is the worst for PCBSTs with CRSE replicates compared to any of the other options

that we considered.

WCBSTs have false positive rates close to the target α = 0.05 for even the smallest

number of clusters. On the other hand, the true positive detection performance of WCB-

STs is worse than all other techniques except PCBSTs with CRSE replicates. For the

cluster-correlated independent variable, just over 70% of estimated β̂x values are statistically

significant when the true βx = 0.25 when there are 30 clusters (for a total sample size of

1200 observations).

The CATs based on Ibragimov and Müller (2010) have false positive rates that are close

to the 5% α value of the test with appropriate size over the entire range of G. The CATs are

17We also examine the possibility of estimating both vanilla SEs and CRSEs and using the maximum of
the two for inference (Green and Vavreck, 2008); the results, reported in an online appendix, show that the
procedure results in excess false positives in simulations with a small number of clusters.
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Figure 1: Size and power assessment for linear dependent variables
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The graphs on the left show the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for parameters whose

true values are βx = βz = 0 in the linear model yi = βxxi + βzzi + βwwi + γg + εi with cluster dependency; this is a measure

of the false positive rate. Each model (except random effects) is a correctly specified linear link GLM (estimated using glm)

with a different method of calculating statistical significance, as indicated in the legend; random effects models are correctly

specified linear RE models estimated using lme4. The hypothesis tests are conducted at α = 0.05, so the false positive rate

should ideally equal 0.05. The top graph shows the false positive rate for a variable (x) that is correlated with the cluster

structure, while the bottom graph shows the false positive rate for a variable (z) that is uncorrelated with the cluster structure

by design. The graphs on the right show the proportion of rejected null hypotheses out of 1000 simulations for parameters

whose true values are βx = βz = 0.25 in the same linear model; this is a measure of the true positive rate. One simulation

is dropped for random-effects models with 60 clusters due to estimation failure and the rejection rate is calculated out of 999

simulations for that case. For a method to have adequate power to conduct significance tests, the true positive rate should

ideally equal 1. The top graph shows the true positive rate for a variable (x) that is correlated with the cluster structure, while

the bottom graph shows the true positive rate for a variable (z) that is uncorrelated with the cluster structure by design.
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also substantially better than all the other cluster-correction options we examine in terms

of the power of hypothesis tests to detect true positives. While power is diminished for all

the techniques for small numbers of clusters, the CATs achieve near-100% power rates more

quickly than any of the clustering alternatives.

The best performance is achieved by RE models, which maintain a 5% false positive rate

across the entire range of G and also achieve extremely high true positive detection rates at

even the very smallest number of clusters. While there is little difference between CAT and

RE true positive or false positive detection rates when the number of clusters is ≥ 15, for 3

or 6 clusters the RE model’s true positive performance is substantially better, ≈ 78% even

with only three clusters.

Simulation results for linear models with µg/γg correlation and serial

dependence

The performance of the random effects estimator (shown in Figure 2) is substantially wors-

ened when the data generating process includes (a) correlation between the average value of

x and the group effect γg and (b) serial dependence in x and y. In this environment, the

random effects model produces a false positive for the cluster-correlated independent variable

≈ 70% of the time for all values of G, even worse than a fixed effects model with vanilla

SEs in terms of excess false positive results. CRSEs, WCBSTs, and both forms of PCBSTs

all perform better than these two options, but tend to over-reject the null hypothesis for

G ≤ 15. CATs have a false positive rate near 5% across all values of G.

The power characteristics of all models with appropriate size characteristics (particularly

fixed effects models with CATs) are substantially reduced in this simulation for the serially

dependent and cluster-correlated variable x. However, power characteristics improve sub-

stantially when the signal is made stronger (relative to noise18) so that βx = βz = 0.5. In

18Simply rescaling a variable X will not improve the power characteristics of an estimator; we change the
true value of β relative to the scale of X in our simulations.)
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Figure 2: Size and power assessment for linear dependent variables with fixed effects and
serial dependence
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The graph on the left shows the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for parameters whose

true values is βx = 0 in the linear model yi = βxxi + βzzi + βwwi + γg + εi with (a) correlation between the group-specific

mean of x (= µg) and the group-level effect γg and (b) within-group serial dependence in ε and x; this is a measure of the false

positive rate. Each model (except random effects) is a correctly specified linear fixed effects model estimated using plm with a

different method of calculating statistical significance, as indicated in the legend; random effects models are linear RE models

with correct variable specification (but no fixed effects) estimated using lme4. The hypothesis tests are conducted at α = 0.05,

so the false positive rate should ideally equal 0.05. The graph on the right shows the proportion of rejected null hypotheses

out of 1000 simulations for parameters whose true values are βx = 0.25 in the same linear model; this is a measure of the true

positive rate. For a method to have adequate power to conduct significance tests, the true positive rate should ideally equal 1.

See the online appendix for results for the cluster-uncorrelated independent variable (z).
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this alternative environment, CATs achieve 78% detection of true positives with 21 clusters.

Summary of binary and multinomial simulation results

The results of our simulations for binary and multinomial dependent variables are broadly

comparable to those for linear models: CATs and PCBSTs with CRSE replicates have

appropriate false positive rates, even for small numbers of clusters, while the other options

have elevated false positive rates in datasets with less than or equal to 30 clusters. CATs have

better power performance than PCBSTs with CRSE replicates. Details on these simulation

results are provided in an online appendix.

There is one important caveat: CATs cannot be calculated whenever any cluster has no

variation on the dependent variable, which can often occur with a categorical dependent

variable. In addition, these models often produce a small number of outlying cluster coeffi-

cient estimates; this can happen, e.g., when an independent variable perfectly predicts the

dependent variable. We handle these problems by dropping clusters with missing and outly-

ing estimates and calculating the CATs using the number of clusters that are not dropped.

Theoretically, this corresponds to the idea that the dropped clusters contain no information

and the remaining clusters still have the same distribution.19 We provide an analytic argu-

ment in the online appendix that dropping these clusters will not distort inferences in many

cases, particularly if the number of dropped clusters is relatively small. By dropping the

clusters with missing and/or outlying estimates, we are able to estimate CATs on every data

set with more than 6 clusters in our simulation20 and our false positive rate remains very

close to the nominal value of 5% with good power characteristics. We describe the practical

consequences of dropping (and not dropping) clusters from the CAT procedure in greater

detail in an online appendix.

19See the online appendix for more information about how our software handles missing and outlying
estimates.

20In the probit simulations, one model could not be estimated for the false positive simulations with three
clusters, and nine models could not be estimated for the true positive simulations with three clusters. One
model could not be estimated for the probit true positive simulations with six clusters.
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Applied Examples

Our simulation results indicate that how we handle clustered data with a small number of

clusters can greatly affect our inferences, and close examination of recently published exam-

ples of the analysis of clustered data underscores this finding. To this end, we re-analyzed

the results of three recent publications that used CRSEs in data with few clusters: Grosser,

Reuben and Tymula (2013), Lacina (2014), and Hainmueller, Hiscox and Sequeira (2015).

In each case, our reanalysis using alternative cluster corrections yields meaningfully different

results. To save space, we describe the Grosser, Reuben and Tymula (2013) replication in

detail and only summarize the findings from Lacina (2014) and Hainmueller, Hiscox and

Sequeira (2015); the details of these replications are present in an online appendix.

Political quid pro quo agreements (Grosser, Reuben and Tymula,

2013)

In a recent American Journal of Political Science article, Grosser, Reuben and Tymula (2013)

conduct a laboratory experiment designed to study the relationship between contributions to

political candidates and the policies that are enacted by those candidates. In the experiment,

a subject’s wealth endowment is randomly assigned by the experimenters; one “rich” voter is

grouped with three “poor” voters, with the rich voter having 13 times more money than each

of the poor voters; two non-voting “candidate” subjects are also assigned to the group. In the

experimental condition that we study in this replication, groups are fixed21 for the duration

of the experiment; 17 such groups are present in the data set. The rich voter is allowed to

give some of his or her own endowment to each of the two candidate subjects; we denote

the rich voter’s monetary transfer to candidate i as mi. After receiving these transfers, each

candidate i publicly proposes a redistributive tax rate τi between 0 and 100 percent. The

21Analysis by Grosser, Reuben and Tymula (2013) convincingly demonstrates that the tacit agreements
between rich voters and candidates that are of interest to the authors only materialize in treatments with
repeated interaction between fixed groups; see, e.g., Figure 2 on p. 590 of their paper for details.
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rich voter and the three poor voters then choose a candidate via majority vote; the selected

candidate receives a fixed bonus payoff for winning. The winning candidate’s proposal (τ ?)

is adopted: each voter pays τ ? percent of their income into a common fund, which is divided

evenly among the voters. Thus, a voter with initial endowment e stands to lose τ ?(e − ē)

if rich, and gain τ ?(ē − e) if poor; ē is the average endowment among all four voters in the

group. This process is repeated in each of 15 periods. Explicit agreements can neither be

made nor enforced in the experiment; for example, the rich voter cannot condition his or her

donation on candidate behavior. Thus, any relationship between the transfers of the rich

voter and the candidates’s tax proposals must be the result of a tacit agreement.

Grosser, Reuben and Tymula (2013, Figure 2) show a strong relationship between lower

proposed tax rates and higher transfers to candidates from the rich voter despite electoral

competition and the majority’s strong interest in complete redistribution. They are also

interested in how these tacit agreements are formed, speculating that rich voters might first

offer high transfers that are then reciprocated by lowered tax proposals. As they explain on

p. 591:

Are tacit agreements the result of mutual reciprocation between the rich voter

and the two candidates? To answer this question, we use regression analysis to

test whether changes in transfers can predict subsequent changes in tax policies

and vice versa.

That is, they run a regression modeling the change in a candidate i’s proposed tax rate

between period t and the previous period t− 1, ∆τ
it = τit − τi(t−1), that is associated with a

change in the transfer received by that candidate from the rich voter between t and t − 1,

∆m
it = mit − mi(t−1). The authors also include a period counter t and interact ∆m

it with t

in order to determine whether tacit agreements unravel over time. The difference between

each candidate’s previous tax choice and the opponent’s choice, τi(t−1) − τj(t−1), is included

as two variables, one for a positive difference (D+
ij = max

(
τi(t−1) − τj(t−1), 0

)
) and one for

a negative difference (D−ij = max
(
τj(t−1) − τi(t−1), 0

)
); these variables are designed to study
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how candidates react to one anothers’ proposals.

The regression analysis of Grosser, Reuben and Tymula (2013) uses cluster-robust stan-

dard errors calculated on the 17 groups of subjects; there are two candidate observations

per group in each of 14 periods (excluding the first period, as changes are undefined for that

period) for a total of 476 observations in the data set (28 total observations per group). The

authors report strong evidence that “candidates do reciprocate the actions of the rich by

decreasing (increasing) their tax policies in proportion to a previous increase (decrease) in

received transfers (the coefficient of [∆m
it ] is always statistically significant)” (p. 592). How-

ever, the authors also report considerable group-to-group heterogeneity; tacit agreements

between rich voters and candidates to exchange transfers for low tax rates evidently did not

emerge in every experimental group (pp. 590-591).22

It is possible that uncertainty in the relationship between changes in transfers and changes

in proposals might be understated by cluster-robust standard errors on data with only 17

groups. Therefore, we reproduce the regression analysis of Grosser, Reuben and Tymula

(2013) using their original CRSEs as well as pairs cluster bootstrapped t-statistics and

cluster-adjusted t statistics. A marginal effect plot23 (Figure 3) for the marginal effect of

changes in transfers on changes in tax policy in each period using these results24 shows that

the relationship is statistically significant in periods 2-6 using CRSEs, but only in periods 3

and 4 using CATs.

Grosser, Reuben and Tymula (2013, p. 290) also separately examine the behavior of

“high tax” groups, which have high winning tax policies (between 90% and 100%), and

“low tax” groups, which have much lower winning tax policies (between 33.3% and 83.7%).

We reproduce their analysis for high and low tax groups using CRSEs as well as PCBSTs

and CATs; marginal effects plots for this analysis are shown in Figure 4.25 For high tax

groups, CRSEs indicate a statistically significant relationship between changes in transfers

22See the online appendix for more details.
23See Brambor, Clark and Golder (2006).
24A coefficient table is shown in online appendix Table 2.
25Coefficient tables are shown in online appendix Tables 3 and 4.
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Figure 3: Marginal Effects Plot, Effect of Changed in Recieved Transfer (∆m
it ) on Changes

in Proposed Tax Rate (∆τ
it) by Period
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and changes in tax policy in periods 2-8. By comparison, CATs find no statistically significant

relationship in any period.26 For low tax groups, transfers are associated with lower tax

proposals between periods 2 and 5 with CRSEs but are statistically indistinguishable from

zero in every period except 2 with CATs.

In summary, although the evidence presented by Grosser, Reuben and Tymula (2013)

shows a possible link between ∆m
it and ∆τ

it, the statistical significance of this link is affected

when we use CATs instead of CRSEs. The strong relationship the authors find between

lower proposed tax rates and larger transfers from the rich voter might be explained by

candidates reciprocating increased donations with decreased tax rates in low tax societies,

but the experimental evidence for this explanation is more uncertain than CRSEs indicate.

Other examples

Our replications of Lacina (2014) and Hainmueller, Hiscox and Sequeira (2015), described

more fully in an online appendix, generally serve to reiterate the issues with using CRSEs

with few clusters that are illustrated in the Grosser, Reuben and Tymula (2013) replica-

tion. Lacina (2014) uses a multinomial logit model and CRSEs to provide evidence for a

link between political representation and civil unrest in India; specifically, she argues that

linguistic groups that could have become Indian states were peacefully accommodated, ig-

nored, or resorted to civil violence in relation to their representation in the Indian National

Congress party. But the relationship between outcomes and representation that she describes

is not robust to alternative methods of cluster adjustment for the standard errors. More op-

timistically, we find that the substantive conclusion of Hainmueller, Hiscox and Sequeira

(2015) is robust to alternative clustering adjustments: based on their experiment, consumers

are willing to pay more for products with a “fair trade” label. However, we also find that

CRSEs understate the uncertainty of the substantive magnitude of this effect: estimated

95% confidence intervals are 20% wider when using PCBSTs and 46% wider when using

26The high tax group results for CATs are arguably more supportive of the authors’ theory than their
original CRSE findings because candidate-voter reciprocity is the mechanism for sustaining low tax rates.
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CATs compared to the original results using CRSEs.

Conclusion

Political scientists often use cluster-robust standard errors to analyze clustered data where

the structure of relationships inside of the cluster is uncertain or unknown. Unfortunately,

past research indicates that CRSEs produce downward-biased standard errors when the

number of clusters is small; this can creates a hazard of excessive false positive results. Our

research indicates that political scientists are still in the habit of using CRSEs in this scenario,

possibly because alternatives are difficult to implement in common statistical packages.

Our findings and the prior literature suggest that substantive researchers should con-

sider alternatives to the CRSE; we make it easy for them to do so with our clusterSEs

package for R and the clustse and clusterbs ado files for Stata. Our simulation analysis

finds that cluster-adjusted t-statistics (CATs) (based on the work of Ibragimov and Müller,

2010) are the best choice among the options we examine for correcting standard errors for

clustering in data sets with a small number of clusters. CATs require that a model must

be separately estimable in every cluster, which is not always possible; however, dropping a

small number of clusters where the model cannot be estimated and using the rest to esti-

mate CATs can still produce valid inferences under many circumstances. If CATs cannot be

estimated (e.g., because a key independent variable does not vary within clusters), pairs clus-

ter bootstrapped t-statistics (PCBSTs) with CRSE replicates and wild cluster bootstrapped

t-statistics (WCBST) generally provide better performance than vanilla standard errors or

CRSEs. Finally, in our simulations an accurate random effects model of intra-cluster hetero-

geneity provides better performance than any cluster adjustment technique, but the cluster

adjustment techniques perform better in the event of misspecification.

Our final recommendation is that researchers think carefully about the amount of in-

formation contained in a data set with a small number of clusters, even if the number of
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observations in each cluster is large. If a researcher does not want to rely on assumptions

about the structure of relationships inside of a cluster, then in some sense s/he is deciding to

ignore the intra-cluster variation in the data set when estimating standard errors. Political

scientists would be wary of deriving strong conclusions from a data set with N = 15 or 20

observations and 5 independent variables, even on the basis of a strongly statistically signif-

icant result. Based on our research and the findings of prior simulation studies, we believe

that the same caution is warranted in the scenario with large N but only 15 or 20 clusters.
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Appendix A: Detailed descriptions of alternative cluster-

robust uncertainty calculation procedures and analytic

description of performance in data with few clusters

In this appendix, we provide detailed step-by-step procedures for calculating pairs cluster

bootstrapped t-statistics (PCBSTs), wild cluster bootstrapped t-statistics (WCBSTs), and

cluster-adjusted t-statistics (CATs). We also provide an analytic demonstration of how we

expect each of these techniques, along with CRSEs, to perform in data with few clusters.

Pairs cluster bootstrapped t-statistics (PCBSTs)

We present this procedure for a data set of size N with G clusters as it is described in

Cameron, Gelbach and Miller (2008, p. 427), with some adjustment of presentation and

notation where necessary.

1. From the original sample, calculate t = β̂/σ̂β̂ using a statistical model, where β̂ is an

estimated model parameter of interest and σ̂β̂ (the standard error of the estimated β̂)

is computed using either the usual non-clustered formula or CRSEs.

2. For k = 1 ... K:

(a) draw a bootstrap data set of G clusters by resampling with replacement G times

from the original sample.

(b) estimate β̂k using the cluster bootstrapped data set and the model from step 1.

(c) calculate tk =
[(
β̂k − β̂

)
/σ̂β̂k

]
where σ̂β̂k (the standard error of the estimate of

β̂k) is computed using the same formula as in step 1. β̂ is subtracted from β̂k in

order to determine the distribution of t in repeated sampling under the null.

3. Reject the null hypothesis β = 0 at level α if and only if |t| > t1−α where tz is the zth
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quantile of the absolute value of the K-many bootstrap draws, |tk|.27

Wild cluster bootstrapped t-statistics (WCBSTs)

Wild cluster bootstrapping (which we present here, with some adaptation and adjustment

of notation) is described in Cameron, Gelbach and Miller (2008, p. 427) as follows:

1. From the original sample, calculate t = β̂/σ̂β̂ from the linear model y = Xβ̂ + Zα̂ + ε̂

where σ̂β̂ (the standard error of the estimated β̂) is computed using the usual non-

clustered formula (or CRSEs). X is a 1×N vector; if there is more than one variable

of interest, the procedure is repeated for each variable separately (putting all other

variables into the Z term).

2. Estimate the model from step 1 including all necessary variables except the variable of

interest, y = Xk0 + Zα̂ + ε̂; this imposes the null hypothesis that β = 0 so that the

bootstrap simulates repeated sampling under the null. Save the residuals ε̂ from the

model as a part of the data set.

3. For k = 1 ... K:

(a) draw G many cluster-level weights wgk from the set {−1, 1}, with probability 1/2

for each possible weight.28

(b) for each observation i = 1 ... N , set ε̂?ik = ε̂ikwg(i)k using the weight for the cluster

to which observation i corresponds g(i). Then calculate ŷ?k = Zα̂ + ε̂?k. This

creates a wild cluster bootstrapped data set of N dependent variable observations

ŷ?k and independent variable observations Xk and Zk.

27Cameron, Gelbach and Miller (2008) describes using the α
2 and (1− α

2 ) quantiles of the signed values of
tk; we opt to “fold” the draws of tk over t = 0 as described in Cameron and Miller (2015, p. 26) to make
more efficient use of a smaller number of draws.

28These are Rademacher weights; other weights are possible, as described in Cameron, Gelbach and Miller
(2008, p. 427).
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(c) estimate β̂k using the wild bootstrap data set and the model ŷ?k = Xkβ̂k+Zkα̂k+γ̂k,

where γ̂k is an error term.

(d) calculate tk = β̂k/σ̂β̂k where σ̂β̂ (the standard error of the estimate of β̂k) is

computed using the same formula as in step 1.

4. Reject the null hypothesis β = 0 at level α if and only if t > |t1−α| where t is the zth

quantile of the K-many bootstrap draws of tk.
29

Note that the procedure described above imposes the null hypothesis that β = 0 for the

cofficient of interest. Bootstrapping in this way produces accurate p-values for statistical

hypothesis testing, but using the bootstrapped critical t-statistic from this procedure will

produce confidence intervals with inaccurate coverage; consequently, our R software package

does not report confidence intervals for WCBSTs when the null is imposed. To create

accurate confidence intervals, one must either bootstrap without imposing the null hypothesis

(an option available with our software) or follow the procedure described in MacKinnon

(2015, pp. 15-18) to impose appropriate null hypotheses for the boundaries of the confidence

interval.

Cluster-adjusted t-statistics (CATs)

The results of Ibragimov and Müller (2010) suggest the following procedure for hypothesis

testing in the presence of clustered data:

1. Estimate a model, saving an estimated parameter of interest β̂.

2. For each cluster g = 1, ..., G, estimate the model from step 1 on the observations in

the cluster only, saving a model parameter of interest β̂g.

29Cameron, Gelbach and Miller (2008) describes using the α
2 and (1− α

2 ) quantiles of the signed values of
tk; we opt to “fold” the draws of tk over t = 0 as described in Cameron and Miller (2015, p. 27) to make
more efficient use of a smaller number of draws.
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3. Calculate the average β̂g over the G-many cluster estimates, β̄G. Calculate β̃g = β̂g−β̄G

for all g. Subtracting the grand mean β̄G enables us to consider each cluster as a sample

from the distribution of possible clusters centered on the null hypothesis β = 0.

4. Calculate the standard error of β̄G, ŝG =
[(

1
G

) (
1

G−1

)∑G
g=1

(
β̃2
g

)]1/2

.

5. Calculate t̂G = β̄G/ŝG.

6. Reject the null hypothesis β = 0 at level α if and only if
∣∣t̂G∣∣ > tα,G−1 where tα,G−1 is

the critical-t statistic for a two-tailed hypothesis test at level α with G− 1 degrees of

freedom.

Note that the variance-covariance matrix of β̂ is recovered in this procedure as ŝG. This

allows us to calculate 95% confidence intervals as β̄G ± (tα,G−1) (ŝG); it also allows us to

calculate standard errors on interaction terms as prescribed by Brambor, Clark and Golder

(2006). Note that β̄G and β̂ will often not be equivalent; therefore 95% CIs formed with this

procedure will often not be centered on β̂.

Small-cluster properties of each procedure

Why would we expect these alternatives to outperform CRSEs when the data contains a small

number of clusters G? CRSEs depend on results for the distribution of β̂ for asymptotically

large G. As an illustration, consider the simple example of estimating a mean using clustered

data with an equal number of observations in every cluster; this example corresponds to a

regression using a constant only:

ygi = β + εgi

where g indexes clusters g = 1 ... G and i indexes individual observations within a cluster

i = 1 ... Ng and a total number of observations
∑G

g=1 Ng = N . For this simple example:

β̂g =
1

Ng

Ng∑
i=1

ygi
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(or the average of observations in the cluster) and the overall estimate of β̂ is:

β̂ =
1

N

G∑
g=1

Ngβ̂g

For an example like this, the Liang and Zeger CRSE from equation (1) is:

varβ̂ = N−2

G∑
g=1

( Ng∑
i=1

ûgi

)2


where ûgi = β̂ − ygi. If we replace the squared sum of cluster-level deviations with s2
g =(∑ng

i=1 ûgi
)2

to represent the squared sum:

varβ̂ = N−2

G∑
g=1

s2
g

it becomes apparent that any asymptotics for the summed term depend on G→∞.

Although the cluster bootstrap estimator of variance is constructed differently, it too relies

on asymptotically large G. Cluster bootstrap samples are created by randomly drawing G-

many clusters from the data with replacement, then recomputing β̂ as above to create a

bootstrap replicate estimate β̂k for the kth bootstrap replicate. This bootstrap resampling

and estimation procedure is repeated K many times; we can set K to be arbitrarily large.

The cluster bootstrap estimate of β̂ is:

β̂? =
1

KGng

K∑
k=1

G∑
gk=1

ng∑
i=1

ygki

=
1

KG

K∑
k=1

G∑
gk=1

ȳgk•

=
1

K

K∑
k=1

ȳ••

where gk indexes the bootstrap resampled clusters in 1...Gk for replicate k and • indicates
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that the mean (indicated by the bar notation) is being taken over the bulleted index.30

Under these conditions (and for clusters with equal numbers of observations), Field and

Welsh (2007, pp. 383-385) demonstrate that “the cluster bootstrap mean and variance of β̂?

are β̂ and ngG
2SB2 respectively” where:

SB2 = ng

G∑
g=1

(ȳg• − ȳ••)2

Furthermore, “the cluster bootstrap variances of β̂?... and the covariance between the sums

of squares are asymptotically correct as G→∞ with Ng fixed.” Similar conclusions should

hold for cluster bootstrapped t statistics as well; in fact bootstrapping the t statistic can yield

faster convergence to an appropriate asymptotic distribution (Liu and Singh, 1987). Similar

principles should also apply for wild cluster bootstrapping, though wild cluster bootstrapping

may converge faster to asymptotics with a careful choice of resampling distribution (Liu,

1988).

CATs are distinct from both CRSEs and cluster bootstrap procedures when the number

of clusters is small because the small-sample characteristics of the underlying test statistic

are known; this knowledge is thanks to analytical work from Bakirov and Szekely (2006) that

is utilized by Ibragimov and Müller (2010). As shown in equations (2) and (3), asymptotic

arguments for CATs depend on Ng →∞, not on G→∞. Thus, when clusters are chosen so

that observations are independent across clusters, the number of observations per cluster is

large, the estimator is asymptotically normal, and the key independent variables vary within

the cluster (so that models can be estimated), we might reasonably expect CATs to perform

better than CRSEs and cluster bootstrapped standard errors when the number of clusters

is small.

30Note that we adapt the Field and Welsh (2007) notation here that they describe on p. 372, with some
modifications to match this paper’s notation.
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Appendix B: Replication of simulations in Figure 1 with

varying cluster size

Figure 5 presents the results of simulations identical to those from Figure 1 with one key

difference: instead of setting all clusters to have 40 observations, we divided the clusters so

that there are an equal number with 20, 40, and 60 observations. The qualitative findings of

this simulation are identical to those of Figure 1.
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Figure 5: Size and power assessment for linear dependent variables, varying cluster size
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The graphs on the left show the proportion of rejected null hypotheses out of 1000 simulations for parameters whose true values

are βx = βz = 0 in the linear model yi = βxi + βzzi + βwwi + γg + εi with cluster dependency; this is a measure of the false

positive rate. Each model (except random effects) is a correctly specified linear link GLM (estimated using glm) with a different

method of calculating statistical significance, as indicated in the legend; random effects models are correctly specified linear RE

models estimated using lme4. One simulation is dropped for random-effects models with 21 clusters due to estimation failure

and the rejection rate is calculated out of 999 simulations for that case. The hypothesis tests are conducted at α = 0.05, so the

false positive rate should ideally equal 0.05. The top graph shows the false positive rate for a variable (x) that is correlated

with the cluster structure, while the bottom graph shows the false positive rate for a variable (z) that is uncorrelated with the

cluster structure by design. The graphs on the right show the proportion of rejected null hypotheses out of 1000 simulations

for parameters whose true values are βx = βz = 0.25 in the same linear model; this is a measure of the true positive rate. One

simulation is dropped for random-effects models with 90 clusters due to estimation failure and the rejection rate is calculated

out of 999 simulations for that case. For a method to have adequate power to conduct significance tests, the true positive rate

should ideally equal 1. The top graph shows the true positive rate for a variable (x) that is correlated with the cluster structure,

while the bottom graph shows the true positive rate for a variable (z) that is uncorrelated with the cluster structure by design.
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Appendix C: Selecting the minimum of vanilla and clus-

ter robust standard errors

If there is correlation between the independent variable of interest and the cluster structure,

CRSEs are a flawed tool but are better at limiting false positives when compared to vanilla

standard errors. If the cluster structure is unassociated with the independent variable, then

vanilla standard errors are much better at limiting false positives. A safe course may be to

estimate both, then use whatever standard error is largest to draw any inferences (Green and

Vavreck, 2008); we show the outcome of applying this process to our continuous dependent

variable simulations from Figure 1 in Figure 6. Ths procedure still produces substantial

excess false positives for cluster-correlated independent variables with ≤ 30 clusters.

Figure 6: Result of using the maximum of vanilla and cluster-robust SEs for inference
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These graphs show the proportion of rejected null hypotheses out of 1000 simulations for parameters whose

true values are βx = βz = 0 in the linear model yi = βxxi+βzzi+βwwi+γg+εi with cluster dependency; this

is a measure of the false positive rate. Each model is a correctly specified linear link GLM with a different

method of calculating statistical significance, as indicated in the legend (maximum SE indicates using the

maximum of vanilla and CRSE values for each simulated data set). The hypothesis tests are conducted at

the value α = 0.05, so the false positive rate should ideally equal 0.05. The graph on the left shows the false

positive rates for a variable (x) that is correlated with the cluster structure, while the graph on the right

shows the false positive rate for a variable (z) that is not correlated with the cluster structure by design.
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Appendix D: Additional simulation results for linear de-

pendent variables with µg/γg correlation and serial de-

pendence

Figure 7 shows the results of our simulations that include (a) correlation between the average

value of x and the group effect γg and (b) serial dependence in x and y. The random effects

models are the worst performers across all values of G in terms of falsely rejecting the null

hypothesis for the cluster-correlated independent variable x, while CATs achieve appropriate

null rejection rates for all values of G. The power of all the cluster-adjustment techniques

to correctly reject a null hypothesis for the cluster-correlated independent variable is sub-

stantially smaller in this simulation compared to the simulation without µg/γg correlation,

particularly for small G.

Figure 8 presents the results of simulations identical to those from Figure 7 with βx and

βz increased to 0.50 from their original setting of 0.25. The detection of true positives for

fixed effects models with CATs, WCBSTs, PCBSTs, and CRSEs are all improved relative

to the original simulation.
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Figure 7: Size and power assessment for linear dependent variables with fixed effects and
serial dependence
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The graphs on the left show the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for parameters whose

true values are βx = βz = 0 in the linear model yi = βxxi+βzzi +βwwi +γg +εi with (a) correlation between the group-specific

mean of x (= µg) and the group-level effect γg and (b) within-group serial dependence in ε and x; this is a measure of the

false positive rate. Each model (except random effects) is a correctly specified linear fixed effects model estimated using plm

with a different method of calculating statistical significance, as indicated in the legend; random effects models are linear RE

models with correct variable specification (but no fixed effects) estimated using lme4. The hypothesis tests are conducted at

α = 0.05, so the false positive rate should ideally equal 0.05. The top graph shows the false positive rate for a variable (x) whose

mean is correlated with the group-level effect, while the bottom graph shows the false positive rate for a variable (z) that is

uncorrelated with the cluster structure by design. The graphs on the right show the proportion of rejected null hypotheses out

of 1000 simulations for parameters whose true values are βx = βz = 0.25 in the same linear model; this is a measure of the true

positive rate. For a method to have adequate power to conduct significance tests, the true positive rate should ideally equal

1. The top graph shows the true positive rate for a variable (x) whose mean is correlated with the group-level effect, while the

bottom graph shows the true positive rate for a variable (z) that is uncorrelated with the cluster structure by design.
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Figure 8: Size and power assessment for linear dependent variables with fixed effects and
serial dependence, stronger signal for x
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The graph shows the proportion of rejected null hypotheses (β = 0) out of 1000 simulations (with true values

βx = βz = 0.5) for the x parameter whose mean is correlated with the group-level effect in the linear model

yi = βxxi + βzzi + βwwi + γg + εi with (a) correlation between the group-specific mean of x (µg) and the

group-level effect γg and (b) within-group serial dependence in ε and x; this is a measure of the true positive

rate. Each model (except random effects) is a correctly specified linear fixed effects model estimated using

plm with a different method of calculating statistical significance, as indicated in the legend; random effects

models are linear RE models with correct variable specification (but no fixed effects) estimated using lme4.

The hypothesis tests are conducted at α = 0.05; the true positive rate should ideally equal 1.
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Appendix E: Detailed results for binary dependent vari-

ables

Figure 9 shows the result of a size/power assessment identical to that for Figure 1 (without

fixed effects or serial dependence), but using a binary dependent variable and a probit model

in place of the continuous dependent variable with linear model. Just as in the continuous

case, CATs have false positive rates that are consistently near the nominal 5% α value of the

test across the entire range of cluster sizes with good true positive detection performance

(albeit somewhat worse than alternatives for the cluster-uncorrelated independent variable

z). By contrast, CRSEs and PCBSTs with vanilla replicates have false positive rates that

are substantially higher than α for ≤ 30 clusters. PCBSTs with CRSE replicates have

false positive rates of less than or equal to 5%, but also have poor true positive detection

performance for the cluster-correlated independent variable x.
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Figure 9: Size and power assessment for binary dependent variables
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The graphs on the left show the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for parameters whose

true values are βx = βz = 0 in the probit model Pr (yi = 1) = Φ (βxxi + βzzi + βwwi + γg + εi) with cluster dependency; this

is a measure of the false positive rate. Each model is a correctly specified probit link GLM model (estimated using glm) with

a different method of calculating statistical significance, as indicated in the legend. The hypothesis tests are conducted at the

value α = 0.05, so the false positive rate should ideally equal 0.05. The top graph shows the false positive rate for a variable

(x) that is correlated with the cluster structure, while the bottom graph shows the false positive rate for a variable (z) that is

uncorrelated with the cluster structure by design. The graphs on the right show the proportion of rejected null hypotheses out

of 1000 simulations for parameters whose true values are βx = βz = 0.25 in the same probit model; this is a measure of the true

positive rate. For a method to have adequate power to conduct significance tests, the true positive rate should ideally equal

1. The top graph shows the true positive rate for a variable (x) that is correlated with the cluster structure, while the bottom

graph shows the true positive rate for a variable (z) that is uncorrelated with the cluster structure by design. Note that, for

CAT estimates with 3 clusters, 1 data set is discarded for the false positive simulations and 9 are discarded for the true positive

simulations; 1 data set is discarded for 6 clusters in the power simulations. The denominator for the false and true positive

rates is adjusted to exclude these results.
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Anomaly 1: Failed cluster estimates

We note an anomaly: CATs often cannot be estimated in the probit model with a large

number of clusters. For example, CATs cannot be calculated whenever any cluster has no

variation on the dependent variable because the probit model is unidentified in this cluster

and will thus fail to converge to an appropriate solution. This problem is far more likely to

occur with a binary dependent variable (where noise in a latent continuous propensity does

not always cause variation in the observed dichotomous outcome) than with a continuous

dependent variable. This severity of the problem varies depending on the value of β, the

distribution of γg and ε, and the number of clusters; recall that a failure of the probit

model to estimate in only one cluster results in a failure to estimate CATs. We handle the

problem of failed clusters by simply dropping these clusters from the analysis in Figure 9

and calculating the CATs using the number of clusters in which the model was successfully

estimated; theoretically, this corresponds to the idea that the dropped clusters contain no

information and the remaining clusters still have the same distribution. We provide an

argument to support this idea in the subsequent appendix.31

Figure 10 shows the proportion of the time that CATs fail in our simulation study (in

Figure 9) when individual failed clusters are not dropped; instead, a missing result is returned

for any variable for which an estimate cannot be obtained in at least one cluster. The

percentage of failed (missing) CAT results grows in the number of clusters. In our simulation

31If any cluster fails to estimate for every coefficient in a probit model (due, e.g., to non-variation in
the DV), both the R and Stata software packages return an error by default. The alternative behavior for
both software packages drops these clusters from consideration, but uses the results from models that were
successfully estimated. In some cases, individual variables’ coefficients cannot be estimated in a particular
cluster due to non-variation of the variable in that cluster, but the model can still be estimated if that
variable is dropped. By default, both packages report the final result as missing for any variable that is
dropped from any cluster-specific model (but still reports the results for variables whose coefficients could be
estimated in every cluster). The packages’ alternative behavior will exclude all results from any cluster for
which any variable’s results cannot be estimated. For the Monte Carlo analysis shown in appendix Figure 9,
all clusters where any variable’s coefficient could not be estimated were dropped (the alternative behavior).
The software also has an option to drop any cluster with any beta estimate whose distance to the mean
is more than 6 times the inter-quartile range; the results in appendix Figure 9 enable this option. The R
software for multinomial logit models always excludes clusters for which any variable’s results cannot be
estimated, but allows dropping of clusters with outlying estimates as an option.
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with true positives, CATs fail well over 90% of the time for 120 clusters. The reason is simple:

as the number of clusters rises, the probability that at least one cluster will have no variation

in the dependent variable also rises; even one cluster with unidentified β̂ estimates will cause

CATs to fail.

Figure 10: CAT failure rates
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The graphs show the proportion of probit models for which CAT estimates could not be computed for βx out

of 1000 simulations. The graph on the left shows the proportion of missing CAT estimates for simulations

where βx = 0, while the graph on the right shows the proportion of missing CAT estimates where βx = 0.25.

Anomaly 2: Outlying β estimates

We note another anomaly: even if the model is technically identified in every cluster, extreme

outlier β estimates can be produced in cases where perfect or near-perfect separation of the

outcomes is predicted by one or more independent variables. The result is that the cluster-

level distribution of β has a distribution that is too wide, and consequently too many results

are rejected. We address this problem by dropping clusters whose beta estimates are extreme

outliers from the distribution of cluster-specific betas. Specifically, we drop any cluster with

any beta estimate whose distance to the mean is more than 6 times the inter-quartile range;

the subsequent analytic appendix addresses this possibility. These results in Figure 9 include
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the use of this procedure.

Analysis with and without anomaly corrections

Figure 11 compares the results of CATs under three alternative procedures: (a) dropping

non-converged clusters, (b) dropping non-converged clusters and clusters with outlying β

estimates, and (c) excluding any results with non-converged clusters and without dropping

outlying β estimates. By dropping the clusters without successfully estimated models and

outlying β estimates, we are able to estimate CATs on every data set with more than 6

clusters in our simulation with excellent power and a false positive rate remains very close

to the nominal value of 5%. Note that power rates suffer when CATs drop failed clusters

but not outlying estimates; dropping the outliers improves the power characteristics.
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Figure 11: Size and power assesment for binary dependent variables with and without
dropped clusters
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The graph on the left show the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for

a parameter whose true value is βx = 0 in the probit model Pr (yi = 1) = Φ (βxxi + βzzi + βwwi + γg + εi)

with cluster dependency; this is a measure of the false positive rate. Each model is a correctly specified

probit link GLM model (estimated using glm) with a different method of calculating statistical significance,

as indicated in the legend. CATs are either discarded (not calculated) if all coefficients could not be estimated

in a cluster (“CATs”), or are calculated by dropping any clusters in which a model failed to estimate and

using the remainder (“CATs with dropped clusters”). The graph on the left shows the false positive rate for

a variable (x) that is correlated with the cluster structure. The hypothesis tests are conducted at the value

α = 0.05, so the false positive rate should ideally equal 0.05. The graph on the right shows the proportion of

rejected null hypotheses out of the total number of successful simulations for a parameter whose true value

is βx = 0.25 in the same probit model; this is a measure of the true positive rate. For a method to have

adequate power to conduct significance tests, the true positive rate should ideally equal 1. The graph on the

right shows the true positive rate for a variable (x) that is correlated with the cluster structure. Note that

a small number of models could not be estimated for CATs with dropped failed and outlying clusters: one

model could not be estimated for the false positive simulations with three clusters, and nine models could not

be estimated for the true positive simulations with three clusters (with one additional model failure for six

clusters when outlying estimates are dropped). Failed estimation rates for CATs without dropped clusters

are shown in in Figure 11. In all cases, the denominator for the false and true positive rates is adjusted to

exclude these results.

How our software handles missing or outlying estimates

If any cluster fails to estimate for every coefficient in a probit model (due, e.g., to non-

variation in the DV), both the R and Stata software packages return an error by default.
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The alternative behavior for both software packages drops these clusters from consideration,

but uses the results from models that were successfully estimated. In some cases, individual

variables’ coefficients cannot be estimated in a particular cluster due to non-variation of the

variable in that cluster, but the model can still be estimated if that variable is dropped.

By default, both packages report the final result as missing for any variable that is dropped

from any cluster-specific model (but still reports the results for variables whose coefficients

could be estimated in every cluster). The packages’ alternative behavior will exclude all

results from any cluster for which any variable’s results cannot be estimated. For the Monte

Carlo analysis shown in Figure 9, all clusters where any variable’s coefficient could not be

estimated were dropped (the alternative behavior). The software for both R and Stata also

has an option to drop any cluster with any beta estimate whose distance to the mean is

more than 6 times the inter-quartile range; the results in Figure 9 enable this option. The

R software for multinomial logit models always excludes clusters for which any variable’s

results cannot be estimated, but allows dropping of clusters with outlying estimates as an

option.

52



Appendix F: Analytic Examination of CATs with Miss-

ing Clusters

The Monte Carlo results from the previous appendix indicate that, with limited dependent

variable models, researchers may occasionally encounter clusters where the β̂ coefficients

are unidentified because there is no variation in the dependent variable y, or because an

independent variable perfectly predicts y (“separation”). This presents a potential problem

for CATs (Ibragimov and Müller, 2010), because cluster-level estimates must be calculated

in order to use CATs to conduct hypothesis tests and construct confidence intervals. In

this appendix, we demonstrate conditions under which simply dropping the clusters with

separation does not interfere with inference using CATs.

We begin by quoting the key theorem from Ibragimov and Müller (2010, p. 455), based

on a theorem first proved in Bakirov and Szekely (2006):

Theorem 1. Let xj, j = 1...G with G ≥ 2, be independent Gaussian random variables with

common mean E [xj] = µ and variances V [xj] = σ2
j . Let t =

√
G x̄
sx

with x̄ = G−1
∑G

j=1 xj

and s2
x = (G−1)−1

∑G
j=1(xj− x̄). Let cvG(α) be the critical value of the usual two-sided t-test

based on (1) of level α, that is, P (|TG−1| > cvG(α)) = α, and let Φ denote the cumulative

density function of a standard normal random variable. If α ≤ 2Φ
(
−
√

3
)
≈ 0.083, then for

all G ≥ 2:

sup
{σ1,...,σG}

P (|t| > cvG(α)|H0) = P (|TG−1| > cvG(α))

= α

Φ denotes the normal distribution. The results of Ibragimov and Müller (2010) depend

on cluster-level estimation results β̂g taking a particular distribution as the number of ob-

servations in each cluster Ng →∞:
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√
Ng

(
β̂g − β

)
asym∼ Φ

(
0, σ2

g

)
(4)

which results in the overall vector of results from all clusters β̂G having the distribution:

√
N
(
β̂G − β

)
asym∼ Φ(0,ΣG) (5)

with N =
∑G

g=1Ng, β̂
T
G =

[
β̂1 ... β̂G

]
, and ΣG = diag (σ1, ..., σG). This is consistent

with the asymptotic distribution of many estimators under the assumption that observations

are uncorrelated between clusters and have constant correlation σg within each cluster g.

Thus, for Theorem 1 to apply after dropping clusters with unidentified β̂, the remaining

clusters must still be independently and identically distributed normal as in equation (5).

If the clusters are dropped in a way that is uncorrelated with cluster-level value of β̂g,

then the Ibragimov and Muller procedure remains valid. To demonstrate this, let the set

of Gu dropped clusters be designated Gu, and Gi = G \Gu be the set of Gi many clusters

that are not dropped.

Proposition 1. Let D = [diag(d1, d2, ..., dG)] be a G×G matrix of indicator variables for the

identified clusters where dg = 1 when the quantity
(
β̂g − β

)
is identified and = 0 otherwise.

Assuming the conditions of Theorem 1 in Ibragimov and Müller (2010, p. 455) and the

asymptotic distribution of cluster-specific coefficients in equation (5), if D is statistically

independent from β̂G then
√
Gi

(
β̂Gi
− β

)
asym∼ Φ(0,ΣGi

).

Proof. If β̂G and D are statistically independent, then f(β̂G|D) = f(β̂G). Define Di =

[diag(d1, d2, ..., dGi
)|0], a Gi × G matrix containing the elements of D for which dg = 1.

By Theorem 2.4.4 in Anderson (2003, p. 30),32 if X is distributed according to Φ(µ,Σ),

then Z = AX is distributed Φ (Aµ,AΣA′) where A is an k × m matrix of rank k ≤ m.

Consequently,
√
Gi

(
Di

(
β̂G − β

)
|Di

)
asym∼ Φ(0,ΣGi

) But f(β̂G|D) = f(β̂G); therefore
√
Gi

(
Di

(
β̂G − β

))
=
√
Gi

(
β̂Gi
− β

)
asym∼ Φ(0,ΣGi

).

32See also Judge et al. (1988, p. 50).
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However, the value of the cluster-level β̂g will typically be associated with the probability

that the cluster is dropped. Consider the marginal distribution of non-missing coefficients

for a single cluster, f(β̂g); the joint distribution just stacks these marginals, as each cluster

is independent from the others by assumption. The difference between the true distribution

f(β̂g) and what we observe after dropping clusters with unidentified values of β̂ at any

particular value of β̂g is:

f(β̂g)−
π(β̂g, X)f(β̂g)∫
π(β̂g, X)f(β̂g)dβ̂g

=f(β̂g)

(
1− π(β̂g, X)∫

π(β̂g, X)f(β̂g)dβ̂g

)

where π
(
β̂g, X

)
is the probability that a cluster with coefficient values β̂g and data set

X will produce set of dependent variable values that identify the coefficient estimates in

that cluster (or one minus the probability of missingness). The denominator is the overall

probability of non-missingness over all values of β̂g in the cluster. Distortion is minimized

when:

π(β̂g, X) ≈
∫
π(β̂g, X)f(β̂g)dβ̂g

0 ≈ π(β̂g, X)−
∫
π(β̂g, X)f(β̂g)dβ̂g

Consequently, it appears that the difference between the true distribution of β̂G and the

distribution after dropping non-identified clusters will be minimal if:

1. the overall probability of dropping is small for every cluster g,
∫
π(β̂g, X)f(β̂g)dβ̂g ≈ 1

(implying that π(β̂g, X) ≈ 1 for all values of β̂g) , or:

2. the degree of heterogeneity in the probability of dropping the cluster for different

values of β̂g is small, or π(β̂ag , X) − π(β̂bg, X) ≈ 0 for all values of a and b so that

π(β̂g, X) ≈
∫
π(β̂g, X)f(β̂g)dβ̂g.
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As a rough rule of thumb, by rule 1 above the distortion of results is likely to be small if

the number of missing clusters is also relatively small. It is possible to formally assess the

probability of missingness for each cluster under some assumptions about β̂g and to attempt

to estimate the resulting distortion, if a greater degree of rigor is desired, but we leave this

task to future research.

To illustrate when dropped clusters may or may not be a problem, we have prepared two

examples, depicted in Figures 12 and 13. The figures assume a distribution for a single cluster

coefficient β̂g, then determine the probability that there is no variation in the dependent

variable under the probit model Φ(Xβ̂); a cluster-level estimate will not be identified under

this condition. This probability is particular to the data set, so we create a simple data set

where X is a sequence of values {0.01, 0.02, ..., 0.99, 1} to use in all calculations. The figures

depict the source distribution of β̂g as well as the density of non-missing values of β̂g in the

left panel while the probability that a cluster observation is dropped (as a function of β̂g)

is shown in the right panel. Based on the discussion above, we expect minimal distortion

when (a) the overall probability of missingness is low, or (b) the probability of missingness

is consistent across different values of β̂g.

As Figure 12 shows, when f(β̂g) ∼ φ(µ = 5, σ = 1), there is almost no difference between

the distribution of β̂g with and without dropped clusters. This is because (as shown in the

right panel) the probability of dropping a cluster is near zero across most of the high-density

values of f(β̂g) and is close to zero throughout. The picture is much different in Figure 13,

where the density of β̂g in non-dropped clusters is substantially different than the source

distribution f(β̂g) ∼ φ (µ = 25, σ = 12). The distortion is caused because high values of β̂g

are likely to produce no variation in the dependent variable and therefore be dropped, while

lower values of β̂g are unlikely to do so.
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Figure 12: Cluster dropping due to no DV variation with small distortion
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These graphs depict the result of calculating the probability of no variation in the dependent variable y under a model y =

Φ
(
Xβ̂
)

with cluster-level estimates β̂g distributed according to f(β̂g) = φ(µ = 5, σ = 1). The dataset X is a sequence of values

{0.01, 0.02, ..., 0.99, 1} with each value representing a distinct observation on a single variable in the cluster. The probability of

missingness in the cluster is calculated as π(β̂g) =
∏

i

[
Φ
(
Xiβ̂g

)]
+
∏

i

[
1− Φ

(
Xiβ̂g

)]
. The density of non-missing coefficients

is calculated as g(β̂g |non-missing) ∝
[
1− π(β̂g)

]
f(β̂g).

Appendix G: Detailed results for multinomial depen-

dent variables

Our results for the multinomial case are listed in Figure 14. The performance of each type of

standard error is qualitatively similar to our results in linear and probit models. We conclude

that applying CATs (or PCBSTs with CRSE replicates) is a valid way of limiting the false

positive rate when estimating uncertainty and conducting hypothesis tests for multinomial

models with a small number of clusters. As with the probit models, we drop any clusters

for which any coefficient cannot be estimated or with any beta estimate whose distance to

the inter-cluster mean is more than 6 times the inter-quartile range. The results of this

procedure are depicted in Figure 14.
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Figure 13: Cluster dropping due to no DV variation with large distortion
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These graphs depict the result of calculating the probability of no variation in the dependent variable y under a model y =

Φ
(
Xβ̂
)

with cluster-level estimates β̂g distributed according to f(β̂g) = Φ(µ = 25, σ = 12). The dataset X is a sequence

of values {0.01, 0.02, ..., 0.99, 1} with each value representing a distinct observation on a single variable in the cluster. The

probability of missingness in the cluster is calculated as π(β̂g) =
∏

i

[
Φ
(
Xiβ̂g

)]
+
∏

i

[
1− Φ

(
Xiβ̂g

)]
. The density of non-

missing coefficients is calculated as g(β̂g |non-missing) ∝
[
1− π(β̂g)

]
f(β̂g).

Appendix H: Additional results for Grosser, Reuben

and Tymula (2013)

A bivariate analysis of the relationship between changes in transfers and changes in candidate

tax proposals indicates that group level heterogeneity exists in how candidates react to the

rich voter’s behavior; this is shown in Figure 15. In some of the groups (e.g., groups 7 and

11) there is a reasonably clear negative relationship between the change in how much money

a candidate received from the rich voter and the contemporaneous change in that candidate’s

tax proposal. But, as shown in Figure 15b; many other groups seem to have relationships

clustered around zero, with some slightly less than zero and some slightly greater than zero.

Table 2 reproduces the regression analysis of Grosser, Reuben and Tymula (2013) using

their original CRSEs as well as pairs cluster bootstrapped t-statistics and cluster-adjusted

t statistics. The CRSE uncertainty measures support the authors’ original interpretation
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Figure 14: Size and power assessment for multinomial dependent variables
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The graphs on the left show the proportion of rejected null hypotheses (β = 0) out of 1000 simulations for parameters whose

true values are βx2 = βz2 = 0 in the multinomial logit model with cluster dependency; this is a measure of the false positive

rate. Each model is a correctly specified multinomial logit model estimated with mlogit with a different method of calculating

statistical significance, as indicated in the legend. The hypothesis tests are conducted at the value α = 0.05, so the false positive

rate should ideally equal 0.05. The top graph shows the false positive rate for a variable (x) that is correlated with the cluster

structure, while the bottom graph shows the false positive rate for a variable (z) that is uncorrelated with the cluster structure

by design. The graphs on the right show the proportion of rejected null hypotheses out of 1000 simulations for parameters

whose true values are βx2 = βz2 = 1 in the same multinomial model; this is a measure of the true positive rate. For a method

to have adequate power to conduct significance tests, the true positive rate should ideally equal 1. The top graph shows the

true positive rate for a variable (x) that is correlated with the cluster structure, while the bottom graph shows the true positive

rate for a variable (z) that is uncorrelated with the cluster structure by design.
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that a candidate who receives increased transfers from the rich voter tends to subsequently

propose a reduced tax rate. However, both PCBSTs (with CRSE replicates) and CATs fail

to reject the null of no relationship for the coefficients on ∆m
it and the interaction term (∆m

it ∗ t)

using an α = 0.05 test, two-tailed.

Tables 3 and 4 respectively contain the analysis of “high tax” and “low tax” groups in the

experiment of Grosser, Reuben and Tymula (2013). These regressions are identical to the

regression in Table 2 presented in the main text of the manuscript, except on subsamples of

the subjects defined to be in “high tax” or “low tax” groups according to the criteria specified

in the text. The results of these tables are used to produce the marginal effects plots in

Figures 4a and 4b that are shown in the main text.
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Appendix I: How governments shape the risk of civil

violence (Lacina, 2014)

In the 2014 volume of the American Journal of Political Science, Lacina (2014) uses data

from India to argue that “representation in the ruling party conditioned the likelihood of a

violent statehood movement” (p. 720). Her primary empirical evidence comes from a data

set consisting of 63 “language enclaves” that could have become states inside of the Indian

federal system examined between 1950-1956. The idea is to determine whether there is a

relationship between civil unrest in these enclaves and the balance with which conflicting

viewpoints about statehood were represented in the governing Indian National Congress

Party (INC) inside of these enclaves. Relative representation in the INC “is the ratio of

the Congress representation of the opponents of statehood to the Congress representation of

proponents”(p. 728). State outcomes are coded as status quo (= 1), peaceful accommodation

(= 2), or violence (= 3). According to Lacina’s coding rules, accommodation occurs when

“an enclave becom[es] a state (or part of a state) where the enclave’s largest language is

also the state’s majority language” (p. 729), while violence occurs when a statehood-related

incident involving injuries or deaths is reported in the Bombay edition of the Times of India

during the time period under study.

The conclusion that the author draws from this data set is stated clearly in the abstract:

I show that representation in the ruling party conditioned the likelihood of a vio-

lent statehood movement. Prostatehood groups that were politically advantaged

over the interests opposed to them were peacefully accommodated. Statehood

movements similar in political importance to their opponents used violence. Very

politically disadvantaged groups refrained from mobilization, anticipating repres-

sion. (Lacina, 2014, 720)

This conclusion is supported by the results of a multinomial logit model using clustered

standard errors, which we replicate in the first column of Table 5. As the table indicates, the
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Figure 16: Bivariate plot of relative INC representation and outcomes in Indian language
enclaves, 1950-1956, based on data from Lacina (2014)
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relationship between the log of relative INC representation and its square have a statistically

significant relationship with the violence and peaceful accommodation outcomes. However,

we also have reason to suspect that these results will be sensitive to the structure of the

standard errors. The original CRSEs are clustered on the 25 pre-existing states in which the

language enclaves are located, and our simulation results indicate that this puts the result

at an elevated risk of being a false positive. In our view, an examination of the bivariate

relationship between INC representation and outcomes in the language enclaves (shown in

Figure 16) suggests that this may be a false positive result driven by the use of CRSEs with

a small number of clusters. The plot indicates little apparent relationship between outcomes

and the log of relative INC representation. We therefore proceed with a re-analysis of the

multinomial logit model using alternative cluster-robust measures of uncertainty.

Because some of the 25 clusters have only one observation each and there are only 63

observations total, we cannot feasibly estimate CATs on this data set; there are not enough

degrees of freedom in each cluster to actually estimate the multinomial logistic model in

most clusters. Consequently, we rely on PCBSTs with CRSE replicates for inference as a

fallback measure; 37 bootstrap replicates (out of 1000 estimated) would not estimate, but
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we use the rest for our analysis.

Table 5 shows our results. As you can see, pairs cluster bootstrapped t-statistics decisively

fail to reject the null hypothesis for all the independent variables of interest. Moreover, the

95% CIs around these effects are quite large; this reflects the fact that the tails of the

bootstrap distribution are very wide because we have such a small number of clusters that

contain a relatively small amount of information. We also note that the vanilla standard

errors indicate considerably more uncertainty in the results than the CRSEs; only one of the

coefficients is significant at the α = 0.05 level, two-tailed.

Our conclusion is that Lacina’s (2014) data set is probably too small to support an

analysis that accounts for the clustered structure of the data. If we must draw a conclusion,

a multinomial model with pairs cluster bootstrap standard errors fails to reject the null of no

relationship between INC representation and the presence of a violent statehood movement.

Moreover, an analysis with no cluster correction (using vanilla SEs) yields a similar result.
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Appendix J: Consumer demand for the fair trade label

(Hainmueller, Hiscox and Sequeira, 2015)

Even when the choice of clustering method does not change inferences, it can influence the

degree of uncertainty in the substantive size of a finding. For example, Hainmueller, Hiscox

and Sequeira (2015) conducted a field experiment testing the response of consumers to coffee

bearing a “fair trade” label compared to a standard (non-fair trade) label. The experiment is

designed to see whether purchasing behavior is genuinely influenced by appeals to the ethical

preferences of consumers, including whether these appeals are drowned out when the ethical

product is higher-priced. We focus on the portion of their experiment designed to detect

whether fair trade labels increased coffee sales. In this experiment, the researchers attached

a fair trade label to certain bulk coffee bins in some randomly selected stores, but not in

others. They then compared sales of this coffee from stores with the label to sales from stores

where the label was not applied. The research design is predicated on the assumption that,

on average and at any given time, nothing differs between the two sets of stores or the coffee

in those stores except the application of the fair trade label.

The dependent variable in Hainmueller et al.’s analysis is:

δjt = log(sjt)− log (s0t)

where sjt is coffee brand j’s market share in week t for a particular store and s0t is the

proportion of the latent market share not captured by any brand (viz., the portion of the

potential coffee market occupied by other non-coffee goods). Each observation in the data

set is a brand-store-week. The authors calculate market share “by converting volume sales

to pounds and dividing by the total potential number of pounds of coffee in a given market.

The potential coffee market is assumed to be equal to one cup of coffee per customer per day

in a given store-week” (Hainmueller, Hiscox and Sequeira, 2015, p. 19) There are two bulk
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coffees where the fair trade label is manipulated, and five other bulk coffees never labeled as

fair trade. 26 stores are observed over eight weeks in the data set, but a few brand-store-week

observations are discarded “because of occasional stock outs and/or bulk bin rotations” (p.

19). The resulting model is:

δjt = β0 + β1L+ ξsj + ξt

where L is an indicator variable for bulk coffees where the label is applied, ξsj is a fixed

effect for product j in store s, and ξt is a time dummy for week. As Hainmueller, Hiscox

and Sequeira (2015) show, this statistical model can be deduced from a theoretical random

utility model where individual-level utility is a function of L and random noise.

Visual assessment of the bivariate relationship between market share and fair trade la-

beling (in Figure 17a) seems to suggest that there is a small, positive relationship between

fair trade labeling and market share in 23 out of 26 stores. This is confirmed in a plot of

store-specific regression coefficients of fair trade against market share in Figure 17b. How-

ever, these coefficients vary substantially in magnitude, and there are three coefficients less

than zero (one of which is substantially less than zero).

Hainmueller, Hiscox and Sequeira (2015) originally used CRSEs in their model, clustering

on the 26 stores that participated in their experiment; we replicated these results exactly

and report them in Table 6. As they report, “sales increased by about 10% with the Fair

Trade label (p < 0.01).” However, we also calculated 95% confidence intervals and p-values

using PCBSTs (with CRSE replicates) and CATs, again clustering on store. Table 6 makes

it apparent that the results are more variable when using PCBSTs and CATs compared to

CRSEs; the 95% confidence intervals are 20% wider for PCBSTs and 46% wider for CATs

compared to CRSEs. However, none of these confidence intervals cross zero, allowing us to

reject the null hypothesis of no effect in every case.

On the basis of this evidence, we conclude that the data collected in Hainmueller, His-

cox and Sequeira (2015) are generally supportive of their claim that fair trade labeling in-

creases market share. There is somewhat greater uncertainty associated with the substantive
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Table 6: Effect of Fair Trade Label of Sales of Test Coffees (Table 5, Column 1 from Hain-
mueller, Hiscox and Sequeira (2015))

uncertainty estimates (95% CIs and two-tailed p-values)

coefficient CRSE PCBST CAT

fair trade label 0.103
[0.0425, 0.163] [0.0303, 0.175] [0.0486, 0.225]
p = 0.007 p = 0.007 p = 0.004

This table reports the results of a fixed effects linear regression model. The constant, week fixed effects, and

product-store fixed effects were included in the analysis but omitted in this table.

magnitude of the relationship than would be implied by CRSEs. Fortunately, this greater

uncertainty does not change the results of a t-test, even at the α = 0.01 level.
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