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Abstract

Much of our interest in studying the world stems from the desire to change that
world through political and technological intervention. If we wish to change social
outcomes, we must understand how these changes are precipitated by factors under our
control. But a central aphorism of social science is that correlation is not necessarily
causation: when we observe that two things are associated, it does not logically imply
that changes in one of them cause changes in the other. There are many alternative
explanations for an observed relationship that must be ruled out before causality can be
inferred. Experimental methods (covered elsewhere in this volume) allow us to rule out
many of these alternatives via random assignment of the treatment and strict control
of other factors in the environment. The subject of this chapter, and in large measure
the subject of most research into quantitative analysis and research design, is what we
can do to rule out these alternatives when we cannot conduct an experiment.

1 What is “causal inference?”

As Sekhon1 notes in his essay on causal inference, every student of statistics quickly

learns the aphorism that “correlation is not causation.” Yet a great deal of research

in the social sciences is aimed precisely at inferring causal relationships from empirical

observation. Through clever research design and careful statistical modeling, we try

to identify the hidden causal relationships embedded in the correlations that we can

see. In this sense, a great deal of the work of policy scholars and those in allied
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fields (political science, economics, sociology, etc.) could be considered part of a grand

tradition in causal inference with many approaches and variations.

At present, causal inference tends to have a much more specific meaning. The

term is now strongly linked to what is referred to2 as the “credibility revolution” in

empirical social science, a movement designed to improve the robustness and overall

believability of quantitative research. As Angrist and Pischke describe, the sensitivity

of non-experimental findings to model assumptions and disagreement between non-

experimental studies and experimental studies of the same phenomena led many social

scientists to re-examine their methodologies with an eye toward producing more robust

inferences from non-experimental data.

The result of this “credibility revolution” in social science is a renewed interest in

particular epistemological frameworks, research designs, and statistical models that

are aimed at producing reliable causal inferences. The process begins with a question:

what effect does imposing some treatment T have on an outcome of interest y? A policy

scholar answering the question using a causal inference approach must first specify the

conditions required to infer what changes in y are caused by T . These conditions are

usually derived from a definition of causality and associated epistemological framework,

such as those proposed by Rubin3 or Pearl.4 The person moves on to propose a research

design and analytical strategy under which the necessary conditions for causal infer-

ence can be met; this proposal is collectively referred to as an identification strategy.5

Generally speaking, the strategy is to mimic the conditions of an ideal experiment to

maximize the validity of a causal inference. Where possible, the strategies explicitly in-

clude experimental techniques like random assignment to a treatment and strict control

over external influences. When this is not possible, the strategies attempt to recon-

struct the features of an ideal experiment by using instrumental variables, matching

procedures, or other strategies to imitate experimental conditions.

While causal inference is of interest to all social scientists, it has a special value for

policy-oriented academics and practitioners. Policy work is fundamentally about using
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targeted interventions to produce better social and economic outcomes. This goal leads

naturally to an interest in determining and measuring how much these interventions

actually change outcomes. The driving question of policy research is often, “how much

should I expect a new program or policy to change an outcome of interest?”6 The causal

inference framework is designed to answer just this sort of question.

In this essay, I will explain the counterfactual reasoning framework that underlies

causal inference according to the Rubin causal model and link this framework to the

known advantages of experiments for causal inference. I describe three common pro-

cedures for causal inference in observational (viz., non-experimental) data: matching

methods, regression models with controls, and instrumental variable models. The goal

of the essay is to compile and summarize some of the basic ideas of causal inference as

they are presented in a variety of sources and to relate these ideas to the problems of

policy analysis.7

Throughout my exposition, I tie the discussion of causal inference to a policy-

relevant question: how much does a high school education increase income for those

who receive it? This question is interesting from the perspective of causal inference

because income and education are difficult to disentangle. Although education increases

one’s own income, many confounding factors (such as innate ability) probably cause

both.8 Using U.S. Census data originally collected by Angrist and Krueger,9 I show how

matching, regression, and instrumental variables approaches can be used to recover the

causal effect of a high school education on (log) weekly wage.

2 Counterfactual reasoning and average treat-

ment effects

The Rubin causal model10 is built on the idea of counterfactual reasoning: the causal

effect of a treatment T is equivalent to the difference between what an outcome y
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would be in the presence of T compared to the outcome in its absence. Under some

conditions, we can obtain a reliable estimate of this effect with empirical observation.

2.1 The Rubin causal model11

For a particular individual observation i, the causal effect of T on y is:

yi (T = 1, X)− yi (T = 0, X) (1)

where X includes any influences on y other than the treatment T . This equation says

that the causal effect of a treatment on some unit is the difference between what we

observe for that unit when the treatment is applied, and what we observe for that same

unit when the treatment is not applied.

The fundamental problem of causal inference tells us that we can never observe this

causal effect directly because we cannot simultaneously observe the same unit with

and without the treatment condition.12 Even if we observe the same unit at different

times, influences on the unit that are included in X (including its past history with the

treatment condition) have changed in the interval between the two observations; it is

not a comparison of identical units.

We may, however, be able to observe a collection of units that are on average

the same except for the presence or absence of the treatment. This will give us the

average treatment effect (ATE) on the population that is represented by this sample.

Consider13 taking expectations over i for equation 1:

ATE = E [yi (T = 1, X)− yi (T = 0, X)]

= E [yi (T = 1, X)]− E [yi (T = 0, X)]
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and then taking expectations over X:

ATE = E [E [yi (T = 1, X) |X]]− E [E [yi (T = 0, X) |X]]

= E [y|T = 1]− E [y|T = 0] (2)

Note that I drop the individual indexing for conciseness in places where it can be

inferred. This tells us that we might be able to estimate the average causal effect of

a treatment in some population by comparing the average outcome of treated units to

the average outcome of non-treated units in a sample from that population. Although

we cannot simultaneously observe a single unit with and without the treatment, we

can simultaneously observe a group with the treatment that is functionally identical

to one without the treatment.

Under certain conditions, both of the components of equation 2 can be estimated

in principle (unlike equation 1, which is conceptually impossible to observe). For

example, we can draw a random sample of N observations out of the population of

interest, randomly assign half of this sample to be exposed to the treatment, record

their value for y, and then average over the n = N/2 observations to estimate the first

term of equation 2:

Ê [y|T = 1] =
1

n

n∑
i=1

yi(T = 1, X = Xi) (3)

If we average y for the n observations randomly assigned not to be exposed to the

treatment, we get an estimate of the second term of equation 2:

Ê [y|T = 0] =
1

n

n∑
i=1

yi(T = 0, X = Xi) (4)

This is the venerable logic of experimental design.14

When will the difference between (3) and (4) be equal to the ATE? We require
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two assumptions. First, we must make the Stable Unit Value Treatment Assumption

(SUTVA); quoting Rubin (p. 961):15

SUTVA is simply the a priori assumption that the value of y for unit i when

exposed to treatment T will be the same no matter what mechanism is used

to assign treatment T to unit i and no matter what treatments the other

units receive, and this holds for all i = 1, ..., N and all T = 1, ..., Tk.16

This assumption makes clear that the underlying estimand (Equation 2) exists and

is not subject to influences from other units. Without this assumption, yi could be a

function not just of T and X but also of the other units’ treatment assignments, T−i.

Thus our expectation E[y|T = k] would have to be taken not only over i, but also over

all possible combinations of other units’ treatment assignments, in order to accurately

reflect the ATE. This requirement would make most experiments prohibitively complex

and data-intensive.

The second assumption we require is that assignment to the treatment is “strongly

ignorable,”17 which is defined by two conditions:

{y (T = 1, X) , y (T = 0, X)} ⊥ T |X

Pr(T = 1|X) ∈ (0, 1)

This assumption tells us that a unit’s assignment to a treatment condition is not a

function of that unit’s potential outcomes; it rules out, for example, the possibility that

certain people are selected into a treatment because a particular outcome is expected.18

An integral property of the experimental environment ensures strong ignorability:

random assignment to the treatment.19 It also allows us to assume that the empirical

distribution of X in the treatment cases matches the empirical treatment of X in

the control cases, and furthermore that both of these empirical distributions match

the distribution of X in the population from which the sample was drawn. In an
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experiment, equations (3) and (4) are estimators of E [y(T = k)] for the treatment and

control groups respectively.20

The assumption of strong ignorability is most transparently met under experimen-

tal conditions. Subjects in an experiment are selected randomly out of a population of

interest, and then randomly assigned to the treatment or control condition. Any exter-

nal influences on subjects are held constant by the carefully regulated environment of

the laboratory. Consequently, the only difference (on average) between the subjects in

the treatment and control conditions is the presence or absence of the treatment itself.

Any observed difference in outcome between these two groups must therefore be at-

tributable to the treatment. Furthermore, because the subjects are selected randomly

out of the population of interest, the ATE we calculate from the experiment can be

inferred to apply to that population.21

2.2 Non-experimental data

Outside the laboratory, where treatment conditions are generally not randomly as-

signed, we usually cannot directly compare the average outcomes of treated and un-

treated units in order to calculate an ATE. Very often even the fact of choosing to

be treated is itself an important influence on outcomes. Returning to the example of

high school education, it is plausible that students who stand to gain the most from a

high school education are the students most likely to choose to attain it. It is therefore

problematic to simply compare the expected earnings y for high school graduates to

the expected earnings of non-graduates when estimating the effect of a high school

education on income.

If we designate T as the treatment of receiving a high school education (= 1) or

not (= 0) and S as being selected (or choosing oneself) to finish high school (= 1) or
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not (= 0), then this simple comparison of expected values22 works out to:

E[y|T = 1, S = 1]− E[y|T = 0, S = 0] (5)

but the average treatment effect23 (presuming no other confounding influences) is:

ATE = p (E[y|T = 1, S = 1]− E[y|T = 0, S = 1])

+ (1− p) (E[y|T = 1, S = 0]− E[y|T = 0, S = 0]) (6)

where p is the fraction of the population selecting into the treatment condition. If

assignment to receive a high school education is random, as in an experiment, then

equations (5) and (6) are equivalent because E[y|T = 1, S = 1] = E[y|T = 1, S = 0]

and E[y|T = 0, S = 1] = E[y|T = 1, S = 0]; this is why the ATE is so easy to

calculate in an experimental setting. But it is rare that assignment is truly random

outside the laboratory, and in this case E[y|T = 1, S = 1] 6= E[y|T = 1, S = 0] and

E[y|T = 0, S = 1] 6= E[y|T = 0, S = 0]. That is, we expect the effect of the treatment

on the sample selected to receive it to differ systematically from the treatment effect

on the sample selected not to receive it.24

The problem is illustrated in Figure 1. I depict two cases: observations that have

been assigned to the treatment (S = 1, shown as black circles) and observations that

are assigned to the control (S = 0, shown as white circles). Each circle shows the

expected value of y for each type of case when the treatment is present (T = 1) and

absent (T = 0). The effect of the treatment on S = 1 cases is shown by the line

connecting the black circles; this effect is larger than the treatment effect on S = 0

cases, which is shown by the line connecting the white circles. The simple comparison

of equation (5) is equivalent to the dashed line connecting observed untreated cases

(T = 0, S = 0) to observed treated cases (T = 1, S = 1) cases. Note that this dashed

line is not equal to the treatment effect for cases selected into the treatment (S = 1),
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cases selected into the control (S = 0), or the average between the two.

Figure 1: An example of biased causal inference caused by
simple comparison of treated and untreated cases

E[y]

T=0 T=1

= selected for treatment (S=1)

= selected for control (S=0)

treatment
status

avg. treatment
effect on the

 treated (ATT)

avg. treatment
effect on the 

untreated (ATU)

comparison of
observed treated 

and untreated
cases

This problem leads us to differentiate between estimating the treatment effect on

units selected to receive the treatment and the treatment effect on units selected to

receive the control. The average treatment effect on the treated population, or ATT,25

is:

ATT = E[y|T = 1, S = 1]− E[y|T = 0, S = 1]

This is the degree to which a treatment impacts those who are selected to receive

that treatment in a natural setting (the difference between the two black circles in

Figure 1. To continue our education example, we might assume that the ATT of a

high school education on income would be larger than the average treatment effect on
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the untreated, or ATU:

ATU = E[y|T = 1, S = 0]− E[y|T = 0, S = 0]

which corresponds to the difference between the two white circles in Figure 1. We

might expect that ATT > ATU in this case because rational, self-interested people are

more likely to incur the effort and opportunity costs of an education when they expect

to receive larger benefits from that education.

The distinction between ATT , ATU , and ATE is important for those interested

in estimating the effect of a policy intervention. It is likely that any policy change

will have heterogeneous effects on the population to which it is applied; some will be

more greatly affected, others less so. The change in outcomes that we observe from any

policy initiative will be a complex function of who receives the treatment that wasn’t

receiving it before, and how large an effect that the treatment has on that group.

In the example of high school education, suppose that the government chose to make

it legally compulsory to complete high school (removing the option for older students to

drop out). We might expect this change to have an impact on students’ life outcomes.

However, the observed change would likely be much closer to the ATU than to the ATE

or ATT . Prior to the policy change, those who self-select into receiving a high school

education are probably the people who most strongly benefit from that education.26

These people received a high school education before the policy intervention, and will

continue to receive it afterward. It is those who do not already self-select into receiving

an education who will be most impacted by the policy.

2.3 A word on endogeneity

It is possible that increased education causes increased income, but that increases in

one’s income also cause better access to education even net of the effects of other

variables (e.g., individual ability level or parental household income). That is, one
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may argue that education and income are endogenous, such that the two variables are

simultaneously determined. Endogenously related variables are well-known to social

scientists; to take a famous example, every student of microeconomics learns that the

price and quantity of a good are simultaneously determined by the intersection of a

supply and demand function. A simple regression predicting the quantity of a good

using its price in a functioning market will not necessarily uncover the law of demand

(dquantity/dprice < 0) because the countervailing law of supply (dquantity/dprice > 0)

is simultaneously in operation.

The Rubin causal model does not explicitly contemplate simultaneous relationships

of this type. This fact is evident from the definition of a causal effect embodied in

equation (1), which writes yi as a function of T and X. When y and T are endogenously

related, their levels are jointly determined by the solution of a set of simultaneous

equations. We can also see this in the assumption of strong ignorability, which presumes

that potential outcomes are independent of the value of the treatment conditional on

observable covariates. When y and T are endogenously related, then the value of T is

a direct function of the value of y.

To operate inside of the framework of the Rubin causal model, we must be able to

recast any apparent simultaneity between y and T as the product of an external factor

X which determines y and T , thus restoring the assumption of strong ignorability. In

the case of education and income, an apparent endogeneity between education levels

and one’s own income might be explainable as the product of innate ability, which

determines both. But if y and T really are simultaneously determined and we wish

to isolate the causal impact of T on y, we will have to take a different approach; a

structural interpretation of instrumental variable models can serve this function.27
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3 Applied causal inference: statistical proce-

dures

The Rubin causal model provides an epistemological and ontological framework for

drawing a causal inference. But actually drawing such an inference outside the lab

requires us to specify how we will estimate an particular treatment effect in practice.

I describe three approaches to observational data in this section: matching methods,

regression, and instrumental variable models.

3.1 Regression with matched data

Recognizing the ATT and ATU as distinct estimands suggests a solution for estimating

causal effects in a non-experimental setting. When estimating the ATT , for example,

we might compare a unit that was selected to receive the treatment and did (T = 1, S =

1) to a unit that was selected to receive the treatment but didn’t (T = 0, S = 1). If we

match every selected and treated case in our sample to a selected but untreated case,

we might be able to get an estimate of the sample ATT .28

Indeed, as demonstrated by Rosenbaum and Rubin,29 a treatment effect can still

be estimated on observational data as long as (1) SUTVA holds, (2) the treatment is

strongly ignorable conditional on observable covariates X, and (3) observations can be

compared according to their similarity on X or on a measure of the propensity to be

assigned to the treatment Pr(S = 1) (which is typically a function of X).

In describing using regression with matching methods, I follow recent methodologi-

cal literature in focusing on estimation of the sample ATT .30 Methods to estimate the

ATU and ATE using matching are extensions of these ideas; a variety of sources give

helpful details on how to implement these procedures.31
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3.1.1 Setting up a matching procedure to estimate a sample ATT

When estimating the sample ATT , all matching methods aim to pair cases in the

treated group with cases in the untreated group that are the same in every observable

respect except for the fact that they are untreated. Once this is done, the result is

assessed for balance, the degree to which the observable characteristics of the treated

sample match that of the newly constructed control sample; some procedures aim to

achieve balance automatically without extensive post-matching assessment.32

There are many possible ways to set up a matching procedure,33 and this essay

is too short to give a thorough description of these choices or analyze the tradeoffs

embedded in them. I opt instead to describe one approach in detail: coarsened exact

matching (or CEM) as developed by Iacus, King, and Porro.34

CEM approaches the matching problem by “coarsening” multivalued covariates into

a small number of discrete bins (or strata) that cover a range of values for each covariate;

these ranges can be automatically determined by the program or defined by the user.

Observations are matched when they fall into a stratum containing a non-zero number

of treated and control cases, meaning that these cases have close to the same value

(inside of the stratum range) for all covariates; other observations are discarded. Inside

of each stratum, treatment and control cases are weighted so that each receives equal

weight inside of the stratum. The within-stratum weights are:

ωs
i =

 1 if Ti = 1

ms
T=1

ms
T=0

if Ti = 0

where i indexes observations inside of stratum s, Ti gives the treatment status of

observation i, and ms
T=k is the number of matched observations in stratum s with

treatment status k. Let mT=k be the total number of matched observations in the data

set with treatment status k. Using these within-stratum weights,
∑

i∈ST=1
ωs
i = mT=1

(as appropriate) but
∑

i∈ST=0
ωs
i also = mT=1, which means that the sum of these
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weights would not equal the total matched sample size.35 Therefore every observation

i in the matched data set is instead assigned a normalized weight equal to:

ωi =

 1 if i ∈ ST=1

ms
T=1/mT=1

ms
T=0/mT=0

if i ∈ ST=0

(7)

which correspond to the weights given by Iacus, King, and Porro.36

If there are observations in a stratum that does not include both treatment and

control cases, then these cases are dropped from the analysis. Dropping these cases

means that our causal estimand is the local sample ATT, “the treatment effect averaged

over only the subset of treated units for which good matches exist among available

controls”.37

3.1.2 Analysis of the matched data

After matching has been performed, the matched sample can be used to estimate a

quantity of interest. If we are aiming to estimate the sample ATT , the matched sample

ideally includes all treatment cases paired with appropriately selected and weighted

control cases. We might then simply compare the average value of the outcome variable

y between the two groups to estimate the sample ATT ; this is equivalent to specifying

the following regression model on the matched and weighted sample:

yi = βT ∗ Ti + βC ∗ (1− Ti) + εi

where i indexes observations in the matched sample, T ∈ {0, 1} is a binary indicator of

being exposed to the treatment, and the βT and βC coefficients correspond to estimates

of the predicted value of y for the treatment and control cases respectively. The sample

ATT is βT −βC , and its regression estimate is β̂T −β̂C .38 More simply, we can estimate:

yi = β0 + βTE ∗ Ti + εi
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The estimated coefficient β̂TE is an estimator of the sample ATT .39

Alternatively, one might include the K many elements of X that were previously

used to create the matched sample as control variables in the regression:

yi = βT ∗ Ti + βC ∗ (1− Ti) +

K∑
k=1

βkXik + εi (8)

An estimate of the sample ATT is 1
n

∑
i∈ST=1

[yi − ŷi(Ti = 0, Xi)] from this modified

regression for the set of n treated cases in the sample ST=1.
40 The yi cases are simply

the observed outcomes for the treated cases, while the ŷi are constructed by computing

the regression prediction for these same cases for T = 0 (and with all other covariates

X left the same) using equation (8). The sample ATT can also be estimated41 using

β̂TE in the regression:

yi = β0 + βTE ∗ Ti +
K∑
k=1

βkXik + εi (9)

These procedures have the advantage of being “doubly robust” in that they will yield

a correct estimate of the sample ATT if either the matching procedure achieves ap-

propriate balance or the regression model in equations (8) and (9) is a mathematically

accurate description of the true functional relationship between y, T , and X.42

3.2 Regression analysis of unmatched data

We can also run the regression in equation (9) without performing a matching procedure

first; this is certainly a common practice in the social scientific literature. In this case,

β̂TE will have a causal interpretation43 in the event that the regression estimates are

unbiased. It is sufficient that:

1. The model is correctly specified (that is, equation (9) accurately describes the

data generating process);

2. The ε noise term is uncorrelated with the regressors T and X; and
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3. The matrix of all covariates, including the treatment indicators, has full rank (i.e.,

the number of observations exceeds the number of covariates).

These assumptions are standard in the econometric literature for unbiased estimation

of regression coefficients.44

Under these conditions, β̂TE is an estimate of the ATT , ATU , and ATE of the

treatment. We see this via the derivative of equation (9) with respect to T :

dyi
dT

= βTE

Under the assumption of correct specification, this relationship is constant for all

treated and control cases, and thus ATT = ATU = ATE.

The cost of this greatly simplified procedure lies in the stronger assumptions we

must make about the data generating process in order to derive a causal inference

in the sense of the Rubin causal model. The Gauss-Markov theorem tells us that the

regression-only approach will be the most efficient linear unbiased estimate of causal es-

timands possible, meaning that the uncertainty around our answers will be smaller than

any other (linear) unbiased estimator–but only when additional assumptions hold.45

3.3 Instrumental Variables

Instrumental variables (or IV) techniques provide a third avenue for drawing causal

inferences. The procedure attempts to replace the random assignment to a treatment

that takes place in a laboratory with a model for treatment assignment that is known

to be unrelated to the outcome of interest except through its effect on Pr(T = 1),

the probability of receiving the treatment. The idea hinges upon being able to find a

set of eponymous instrumental variables, variables that are correlated with Pr(T =

1) but not correlated with y except through Pr(T = 1). We thus substitute the

controlled assignment to treatment of a laboratory for assignment to treatment by
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random observable factors.

If we find a binary instrumental variable (call it z), with z ∈ {0, 1}, then the Wald

IV estimator46 for the relationship between T and y in a set of observations i ∈ 1...N

is:

ρ̂w =
Ê[yi|zi = 1]− Ê[yi|zi = 0]

Ê[Ti|zi = 1]− Ê[Ti|zi = 0]
(10)

More generally, we can estimate the impact of treatments T on an outcome y using

instruments Z with instrumental variables regression:47

β̂IV = (X ′PVX)−1X ′PV y

where PV is the projection matrix onto the space defined by V :

PV = V (V ′V )−1V ′

where V is an {N × L} matrix of the N observations in rows, and the K control

variables and L − K instruments in the columns. X is the {N × (K + 1)} matrix

of the treatment variable and the controls; thus, V = [ Z X−T ] where X−T is the X

matrix deleting the column corresponding to the treatment variable. The relationship

between T and y, βT , is estimated by the element of the β̂IV vector corresponding to

the treatment variable T . Control variables need not be included, but can be in order

to improve the efficiency of results; T can be continuous or binary.

3.3.1 A causal interpretation for IV: the local average treatment ef-

fect

Under some assumptions, ρ̂w and β̂T have a causal interpretation under the Rubin

causal model. Consider the Wald IV estimator first; I follow the presentation of Angrist,

Imbens, and Rubin.48 Distinguish between Ti and zi, unit i’s value for the treatment and
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instrument respectively, and T and z, the N × 1 vectors of treatment and instrument

values for the entire set of units. Define the following terms:

• Ti(z) is unit i’s treatment status contingent on the configuration of all units’

instrument value z;

• yi(Ti(z), z) is unit i’s outcome value contingent on the unit’s own treatment status

Ti(z) and all units’ instrument vector z;

• yi(T, z) is unit i’s outcome value contingent on all units’ treatment status and

instrument value; and

• y(T, z), the vector of all units’ outcome values contingent on all units’ treatment

status and instrument value.

A causal interpretation of ρw requires:

1. The stable unit treatment value assumption (SUTVA) as defined earlier, which

can now be formally stated as:

(a) zi = z′i → Ti(z) = Ti(z
′)

(b) zi = z′i and Ti = T ′i → yi(T, z) = yi(T
′, z′)

2. Random assignment49 of the instrument: Pr(z = c) = Pr(z = c′) for any two

N × 1 instrument vectors c and c′;

3. The exclusion restriction: z affects y only through its effect on Pr(T = 1), or

y(T, z) = y(T, z′) for all values of z, z′, and T; and

4. Strong monotonicity : the instrumental variable moves the probability of assign-

ment to treatment in one direction, or Ti(zi = 1) ≥ Ti(zi = 0) for all i ∈ 1...N

and ∃j : Tj(zj = 1) > Tj(zj = 0)

Under these conditions, proposition 1 in Angrist, Imbens, and Rubin50 shows that

ρ̂w is an estimate of the Local Average Treatment Effect or LATE:

LATE =
E[yi(Ti(zi = 1), zi = 1)− yi(Ti(zi = 0), zi = 0)]

E[Ti(zi = 1)− Ti(zi = 0)]
(11)
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Given our earlier assumptions, the LATE has an interesting interpretation: it is the

effect of the treatment on the outcome for that subgroup of people who would take

the treatment when exposed to the instrument (Ti(zi = 1) = 1) but would not take the

treatment when not exposed to the instrument (Ti(zi = 0) = 0). Consider Table 1, a

duplication of Table 1 in Angrist, Imbens, and Rubin.51 The table shows that there are

four types of observations in the z = 1 and z = 0 pools: never-takers, always-takers,

defiers, and compliers. The never-takers and always-takers have the same treatment

status regardless of z, compliers take the treatment when z = 1 and do not when z = 0,

and defiers take the treatment when z = 0 but do not when z = 1. The existence of

defiers is ruled out by the strong monotonicity assumption. The exclusion restriction

tells us that the never- and always-takers have the same value for y regardless of

z because their treatment status does not change. Thus, the only difference in the

treated and un-treated samples is the response of compliers.

Table 1: Unit types and treatment assignment
(duplicates Table 1 in Angrist, Imbens, and Rubin 1996)

Ti(0)
0 1

Ti(1)
0 Never-takers Defiers
1 Compliers Always-takers

Ergo, Ê[yi|zi = 1]− Ê[yi|zi = 0] is a weighted average of the effect of the treatment

on compliers, and zero effect (for the never- and always-takers).52 Once we multiply by

the estimated inverse proportion of compliers in the population, Ê[Ti|zi = 1]−Ê[Ti|zi =

0], we obtain an estimate of the treatment effect on compliers (the LATE).

When 2SLS is used to estimate βT , the resulting estimand is still a local average

treatment effect, albeit averaged over some characteristic of the sample; quoting Angrist

and Pischke (p. 173):53

2SLS with multiple instruments produces a causal effect that averages IV es-

timands using the instruments one at a time; 2SLS with covariates produces
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an average of covariate-specific LATEs; 2SLS with variable or continuous

treatment intensity produces a weighted average derivative along the length

of a possible non-linear causal response function. These results provide a

simple causal interpretation for 2SLS in most empirically relevant settings.

3.3.2 The LATE and its connection to policy scholarship

The LATE is of particular interest to those studying policy because of the close con-

ceptual connection between instruments and policy interventions. As the exposition

above indicates, an instrument is an influence which has an isolated impact on expo-

sure to the treatment; that is, it impacts receipt of the treatment without impacting

(or being impacted by) anything else. Under ideal circumstances, the instrument is

actually randomly assigned just as a treatment would be in an experiment. But the

instrument is not the treatment itself.

Similarly, most policy interventions are not identical to the treatment. Policy in-

terventions are instruments that we hope will change behavior, which in turn changes

an outcome of interest. The change in behavior is the actual treatment. Scholars of

policy are thus intrinsically interested in the causal impact of a behavioral change on

outcomes through the mechanism of instruments.

Furthermore, not everyone who is exposed to the instrument will receive the treat-

ment, and not everyone who is not exposed to the instrument will not receive the

treatment. This is analogous to the effect of a policy intervention. For example, im-

posing cigarette taxes (the instrument) will cause some people to stop smoking (the

treatment), but some people will smoke whether the tax exists or not while others

will remain non-smokers regardless of the tax. The relevant information for a policy

maker is how much the change in taxes will change outcomes (like life expectancy or

health care costs) through its impact on the behavior of those who do respond to the

instrument. This is precisely the definition of the LATE.54

Returning to our example of education, an IV estimator can be used to tell us the
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effect of attaining a high school education (the treatment) on income (the outcome of

interest) for the subset of people whose school attendance choices are actually changed

by a policy initiative. An ideal instrument would be created by a government initiative

to randomly select a subset of 1,000 students in a particular cohort and guarantee to

pay them a cash bounty for completing high school. The instrument is ideal because

(a) we strongly expect the instrument to be correlated with the decision to complete

high school, and (b) we do not expect weekly earning potential to be affected by the

receipt of a one-time cash bounty except through its effect on whether the student com-

pletes high school. Furthermore, we know the instrument is not spuriously correlated

with other influences on income (e.g., through individual ability or parental education

levels) because it has been randomly assigned: participants cannot preferentially select

themselves into participation in the program.

Inside of the group, some set of “always-takers” will complete high school with

or without the bounty; another set of “never-takers” will not complete a high school

education even with the bounty. However, some set of individuals will complete high

school with the bounty when they would not have done so without it; this set of

“compliers” has their behavior changed by the program. By comparing the expected

earnings of the set of people in the program to the set of people not in the program

using equation (10), we can calculate the impact of high school completion on this

compliant population.

Note, however, that any particular estimated LATE is not necessarily a measure

of the impact of an arbitrary policy change.55 It is not, for example, when “compliers”

with an instrument are not the same as the “compliers” with a policy change. Quoting

Carneiro, Heckman, and Vytlacil56 (p. 16):

...if the instrumental variable we use is exactly the policy we want to evalu-

ate, then the IV estimand and the policy relevant parameter coincide. But

whenever that is not the case, the IV estimand does not identify the effect
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of the policy when returns vary among people and they make choices of

treatment based on those returns. For example, if the policy we want to

consider is a tuition subsidy directed toward the very poor within the pool

[of people who would not ordinarily attend schooling], then an instrumental

variable estimate based on compulsory schooling will not be the relevant

return to estimate the policy.

4 Application: the effect of high school educa-

tion on earnings

To illustrate the application of causal inference techniques to an important policy

problem, I reanalyze data collected by Angrist and Krueger57 using standard regression

techniques, regression with coarsened exact matching, and two stage least squares

regression using an instrumental variable. Angrist and Krueger originally used the

public use file of the 1970 U.S. Census to study the relationship between income and

total years of education received. I will use their replication data to estimate the

causal impact of receiving a high school education on income; the original paper briefly

discusses this relationship (pp. 1004-1005) but does not directly study it.

4.1 Regression with control variables

The easiest and most straightforward approach to estimating the causal effect of a high

school education on income is to simply regress one on the other in a large observational

data set of individual respondents and control for likely sources of spurious correlation.

The Angrist and Krueger data set is derived from the public sample of the 1970 U.S.

Census; I analyze the cohort of respondents born between 1920 and 1929.58 It contains

the following variables:

• log Weekly Earnings
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• Education completed in years

• Race (1 = black, 0 = white)

• Married (1 = yes, 0 = no)

• SMSA (1 = respondent lives in the central city of a metropolitan statistical area)

• Census region indicators (9 binary dummy variables)

• Year of birth (10 binary dummy variables)

I recode the years of education variable to a high school completion variable (= 1 if

the respondent has ≥ 12 years of education, and = 0 otherwise); this is the treatment

variable, T .

I use this data to estimate the following regression model:

yi = β0 + βTE ∗ Ti +
K∑
k=1

βkXik + εi (12)

The control variables of race, marriage status, SMSA, census region, and year of birth

are included as elements k ∈ 1...K. The results are shown in Table 2, Column 1.

The regression coefficient for attaining high school is 0.346, indicating that high

school graduates earn ≈ 35% more than non-graduates on average. If equation 12 is an

accurate specification of the data generating process, then on average receipt of a high

school education causes a 35% increase in weekly wages for both the populations that

received the treatment (high school graduates) and those who did not (non-graduates).

4.2 Regression with coarsened exact matching

One weakness of the regression procedure is that it relies on an accurate specification

of the data generating process. By contrast, matching procedures do not require this

condition. We still, however, require SUTVA and strong ignorability of Pr(T = 1)

contingent on our set of control variables. Thus, the validity of the procedure re-
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Table 2: How much does completing high school change future income?

(1) (2) (3)
Regression CEM w/ Reg IV 2SLS

At least 12 yrs. schooling (1 = yes) 0.346∗∗∗ 0.339∗∗∗ 0.388∗∗

(139.39) (140.94) (3.21)

Race (1 = black) -0.367∗∗∗ -0.357∗∗∗ -0.355∗∗∗

(-82.02) (-61.49) (-10.73)

Married (1 = yes) 0.306∗∗∗ 0.305∗∗∗ 0.304∗∗∗

(78.84) (76.21) (45.64)

Metro Area (1 = center city) -0.156∗∗∗ -0.143∗∗∗ -0.153∗∗∗

(-58.65) (-53.57) (-20.50)
N 247199 247090 247199

t statistics in parentheses

dependent variable: log weekly wage in $. Data from the 1920-1929 Cohort of the 1970 U.S. Census.

All models also include year of birth dummy variables, region dummies, and a constant.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

quires (among other things) that we use a complete set of confounding variables in the

matching process.

As noted above, there are many possible choices that one can make as a part of a

matching procedure. For this demonstration, I elect to use coarsened exact matching

(or CEM) as developed by Iacus, King, and Porro59 and implemented in Stata by

Blackwell et al.60

I use the cem command in Stata to match the Angrist and Krueger data on all

control covariates (including year of birth and region of residence dummy variables);

the process discards 89 control and 20 treatment cases that fall into a stratum with

no matching observations and assigns the rest weights given by equation (7). I then

repeat the regression of equation (12) on the matched and weighted data; the principle

of “double robustness” ensures an accurate estimate of the local sample ATT if either

the matching procedure is adequate or the regression is accurately specified.

The matching procedure is successful at improving balance between the observable
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characteristics of the treated and control samples. Balance is calculated in the cem

software using the L1 statistic:

L1(f, g) =
1

2

∑
`1...`K

|f`1...`K − g`1...`K |

where K indexes the number of (coarsened) independent variables, `1...`K is the coor-

dinate of a matching stratum, f`1...`K is the frequency of treated cases in the stratum,

and g`1...`K is the frequency of control cases in the stratum. Perfect balance is indi-

cated by an L1 = 0.61 Before performing matching on the Angrist and Krueger data

set, L1 = .159; after matching, L1 = 2.29 ∗ 10−14.

The results are shown in Column 2 in Table 2. The coefficient for high school

attainment is 0.339, indicating that earning a high school diploma causes a 33.9%

increase in weekly wage for those in the sample who received the treatment (i.e., this

is the local sample ATT). This is very similar to the estimate of a 34.6% increase that

we achieved with a regression analysis alone.

4.3 Instrumental variables models

Finally, we consider the possibility of using the 2SLS IV procedure to determine the

causal effect of high school education on earnings. The first and most important ques-

tion is: what instrumental variable is correlated with the decision to complete high

school, but not correlated with weekly income except through its effect on high school

completion?

Angrist and Krueger argue that an individual’s quarter of birth (that is, the quarter

of the year in which a student was born) is a good choice of instrument. Their reasoning

is that compulsory school attendance laws in the United States (which require students

to achieve a certain age before they may discontinue their education) create a link

between educational attainment and quarter of birth. They argue (on p. 982):
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Students who are born early in the calendar year are typically older when

they enter school that children born late in the year. ...Because children

born in the first quarter of the year enter school at an older age, they attain

the legal dropout age after having attended school for a shorter period of

time than those born near the end of the year. Hence, if a fixed fraction of

students is constrained by the compulsory attendance law, those born in the

beginning of the year will have less schooling, on average, than those born

near the end of the year.

4.3.1 2SLS estimates

In their original article, Angrist and Krueger interact three separate dummies for quar-

ter of birth (one for each quarter, omitting the fourth as a base category) with ten years

of birth dummies (one for each year between 1920-1929) for a total of 30 instruments.

We can use this larger set of instruments, along with the full set of control variables,

to create a 2SLS IV estimate of the effect of completing high school on log weekly

earnings. The F-test of a regression of all instruments on high school completion re-

jects the null that the full set of instruments is not related to completing high school

(F(30,247148) = 3.48, p < 0.001). The R2 of this regression = 0.0465, which is relatively

weak.

The presence of multiple instruments allows me to perform a Sargan test for overi-

dentifying restrictions in the set of instruments.62 The Sargan test checks a key as-

sumption of the IV procedure:

E[Z ′ε] = 0

That is, the N×(L−K) matrix of instrumental variables Z should be uncorrelated with

the second stage 2SLS errors. In the context of the 2SLS model, this is a restatement of

the exclusion restriction: y(T,Z) = y(T,Z′) for all values of Z, Z′, and T. When the
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2SLS model of equation (11) is just identified (one instrument with a single treatment

condition), we cannot perform this test. The abundance of instruments allows us

to implicitly compare the results of single-instrument models to one another; if the

instruments are valid, “the estimates should differ only as a result of sampling error.”63

The test is equivalent to regressing the fitted error terms of the 2SLS regression ε̂ on

the set of instruments Z; under the null hypothesis that all instruments are valid, N

times the R2 from this regression is distributed χ2
L−(K+1).

64

For the quarter of birth × year of birth dummy instruments, the Sargan test yields

a p-value of 0.0885. This is a marginal result, close to rejecting the validity of the

instruments but not quite doing so at the 0.05 level. Thus, we cautiously proceed to

interpret the 2SLS estimates of the relationship between high school education and log

weekly earnings as a measurement of the local ATE.

The 2SLS results are shown in column 4 of Table 2. The coefficient of 0.388 indicates

a LATE of a 38.8% increase in weekly earnings associated with attainment of a high

school education. Thus, the model indicates that a high school graduate who completed

high school as a result of birth timing (when they would not have otherwise) receives

38.8% more weekly earnings as a result of completing high school. The uncertainty

associated with these results is somewhat higher than in the other models due to the

addition of the second stage of the 2SLS estimator and the comparative weakness of

the instruments; this is reflected in smaller t-statistics. However, the magnitude and

direction of the 2SLS results are extremely similar to those for our plain regression and

regression-with-matching estimates.
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5 Conclusion: what can policy makers and schol-

ars learn from the causal inference movement?

As I hope this chapter has communicated, it is challenging to use observational data

from outside the laboratory to draw a causal inference. Observing an association

between the value of a treatment T and an outcome y is not sufficient to conclude that a

change in the treatment will cause a change in expected outcome E[y]. At a minimum,

we must rule out the possibility that confounding factors could be simultaneously

causing y and T ; confounding can create an observed association beteween y and T

where no causal association exists.

Even if changes in T do cause changes in y, the strength of the observed association

is unlikely to correspond to the magnitude of the causal impact of an change in T

initiated by a policy intervention. In observational data, people choose whether to

be exposed to a treatment, and thus those who stand to derive the greatest benefit

from a treatment are often the most likely to choose to receive the treatment. Thus,

simply comparing the outcomes of treated and untreated units from observational data

is likely to give a highly misleading indication of how much outcomes would change if a

change in treatment status was imposed by an external event, such as a legal mandate.

In my judgment, the most important lesson that policy-makers and scholars can

draw from the causal inference literature is that describing (let alone predicting) the

practical impact of a policy change using observational data is complicated. Scholarship

on causal inference alerts us to the practical problem of confounding, but perhaps even

more importantly it reminds us that causal relationships are heterogeneous and that

policy interventions will not cause uniform changes across a target population.

Consider the results of our inquiry into the causal impact of high school completion

on income. Which, if any, of the results in Table 2 is most informative about the

potential increase in earnings that would result if we legally compelled all students to
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complete high school? Our matching estimator of the sample ATT is probably not

the right estimand; this is the effect of high school completion on those who already

receive it, not on the population of those with less education whose behavior would be

changed.

The 2SLS IV estimator of the LATE is perhaps more informative; this, at least,

tells us the response of people whose status was changed as a result of an accident of

birth. But there is still a substantial set of “never-compliers” whose decision to drop

out of high school was not changed by time of birth, and these non-compliers would be

a significant subset of the group affected by the policy change. Our LATE estimate is

not guaranteed to describe the change in earnings for this subset.65

Moreover, there is the possibility that our 2SLS estimates are subject to“coarsening

bias.”66 Increased years of schooling have an impact on weekly earnings even if high

school is not completed, and the quarter of birth instrument impacts years of schooling

aside from increasing the chance of completing high school; this creates a pathway

between the instrument and the dependent variable that does not pass through the

treatment (high school completion). Because high school completion necessarily entails

attaining more years of schooling, it may be challenging to causally separate these

effects with an instrumental variable.

All of these approaches depend directly on the stable unit treatment value assump-

tion (SUTVA), and there is a strong reason to believe that SUTVA would not hold in

the presence of our proposed policy change. Weekly earnings are determined in part

by the market forces of supply and demand, and increasing the supply of high school

graduates via the proposed policy without changing demand is likely to drive down the

wage for a person with a high school diploma. In terms of SUTVA, the relationship

between treatment and outcome for person i depends on the treatment status of person

j; a high school diploma is more valuable if fewer people have one. This is particularly

true if education serves a signal of underlying quality for employers rather than a source

of practical skills.67 Thus, we have reason to doubt that any of our results in Table 2
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are truly reflective of the probable impact of our policy intervention on income.68

None of this is to say that it is impossible to derive a causal inference from observa-

tional data, or that quantitative tools cannot determine the causal impact of a policy

intervention. Instead, it is important to precisely determine the desired causal esti-

mand before performing an empirical analysis, ensure that our empirical design gives

us the best chance of obtaining an accurate estimate, and be aware of the sensitivity

of any causal inference we draw to the assumptions we had to make in order to justify

that inference. For example, the estimates in Table 2 are more defensible as estimates

of the causal impact of a smaller-scale policy intervention to increase high school grad-

uation that is unlikely to influence the market as a whole; this is true because such a

program is unlikely to entail a violation of SUTVA. The causal inference framework is

well-suited to reminding us of these limitations such as these and preventing us from

drawing inferences beyond the support of our evidence.
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