Introduction to matching
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¢ In brief, matching is a way of non-parametrically controlling for confounding
variables —_—
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conditions via observable contextual variables

e Sometimes characterized as a "causal inference" procedure...
o ...whichitis, but only €r certain conditions

o (sois linear regression, under certain conditions) Samp\e celech o'aS }camsm‘n%
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Causal inference
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e What is causality? The Neyman-Rubin causal model
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e Experimentally, T is often (by no means always) conceived as binary
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¢ The fundamental problem of causal inference
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Assumptions that make causal inference plausible

Tuesday, November 13, 2012
9:30 PM

e What is a simple set of assumptions we can make in order to identify causality?
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¢ Even this simple assumption can be problematic...

owitted MaMLa Ve o2 & Apeck to  SUTUA-.

e Calculate average treatment effect, where the average is taken over ¢
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When does ATE = Causal relationship?
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¢ Simply calculating and comparing treatment averages requires two conditions:

\\ 1) Balance - we need ¢ to be distributed similarly between the treatment conditions

2) SUTVA - the stable unit treatment value assumption:

f(C,¢ID =1) = f(C,¢|D =0)

The treatment assignment process does not change the causal relationship.
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Calculating Treatment Effects using Matching
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e Matching methods are an attempt to construct a data set
where ¢ is equal between the treatments to allow the
calculation of treatment effects
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1) Average Treatment Effect (ATE)
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2) Average Treatment Effect on the Treated (ATT) E [W /Pn‘va‘e , w-{ 4o ‘M\/t»{'(_] _
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* This can typically be calculated with a mean comparison-test or

(weighted) regression on the matched data
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¢ We can also calculate this with post-matching regression analysis
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Propensity scores
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¢ How do we match when there are multiple potential confounders (i.e., almost always)?
¢ One technique: propensity score matching
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¢ Another idea: Coarsened Exact Matching
/\N\/\'NVW

— Qko»l—i{;q C\’ on Gy s bdwasr g F#

® 1

9 - Matching Page 9



Matching techniques
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e For multidimensional matching problems (i.e., all the important ones), there are different ways of achieving
matches

e Each matching technique is designed to achieve better balance
e Many techniques (and others besides!) are implementedin software designed to implement matching

e Discuss some techniques implemented in Matchlt

1) 4\learest-neighbor rLatching via propensity score
2) Matching via genetic optimization of balancing metrics
———— 3) Coarsened ex4c cAin
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