How do we handle missing data?
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e It is extremely common for observations to be partially or
completely missing for important data sets, especially observational
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data sets
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e So what?

o dels cannot be estimated on missing data without some kind of

processing
o Missing data contains patentjally jmportant information

o Simply removing the missing cases can cause more variable (best
case) or even bias rstcase)estimates =
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e Given that ave to use these flawed data sets... how do we use them
in a way that minimizesth&harm to inferente
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Missingness Patterns
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¢ Usually, data is missing in three ways:

1) Missing Completely at Random (MCAR): the occurrence of /

missing valugs for a Variable is not related to the missing value, /’ e SawcL S
pmistales

the values of any other variables, or the pattern of missingness in
other variables
xher variables

2) Missi t Rando AR): the occurrence of missing values for a M!OLLG_,

variable is random, contingent on the value or missingness of

observable variables o ’a AC AT M&i(ﬂtjul.cﬁs

3) Missing Not at Random (MNAR): the occurrence of missing
values is systematically related to unknown or unmeasured
covariate factors .

e Each form of missingness has different potential consequences
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¢ Idea: we can fix MCAR and MAR data to look like non-missing data
by filling in values based on what we DO know, reducing bias and
inefficiency
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Early ideas
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e Scholars have traditionally used d methods for handling missing
data

1) Listwise deletion: drop any case with missing data on ANY observation
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Probably the most common naive method for handling missing data
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Implemented by default in Stata and (usually) R
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2) Mean (or multivariate dlstrlbutlon) imputation: replace missing values with the observed mean (or
draws from the mulfivariate ution) of the variable

c. Maximum loss of information

» 2 Understates variability in the imputed variable

b. Makes no (or a limited) attempt to recover associations between the variables
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3) Regression-based imputation

a. Implemented in the "impute" command in Stata
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b. tajnty about th
using the imputed data

Bt g

uality of the estimate is not included in estimates
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4) Interpolation of panel data

a. If value is missing, either use the observation from the last time period OR a linear
e

interpolation of the previous and next observation

b. Some evidence that this technique creates bias and overconfidence in estimates
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c. Only works in panel data, obviously i
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Better idea: multiple imputation Yy~ £ F
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e We want to account for the uncertainty in our imputed variable

————

¢ use a model of some kind (e.g., regression?) to predict the missing observations
Sing =F1iSsing ObServatio

¢ Instead of simply picking one value for a missing value, we pick many... and our
uncertainty is represented e VCV matrix of t coefficientSwe use to
,MWW\/\/

predict the missing values!
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1) We pick m many values of @ out of its asymptotic distribution, the multivariate normal

ustMheVCVZtoﬂllm the mean and VCV of this"distribttion
®(a,%) -

2) predict m many values of the missing value, creating m many data sets
it Al Sk
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3) re-calculate m new estimates ofﬂ~ = Z%=1 B~m using each of the imputed datasets, and
then calculate the standard error of our final E using the following formula developed
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where W = ;Z%ﬂ @nd B = EZ%n(ﬁm - B) — dinr —~ Wl'ﬁll—'q't

/\/\W (—\V\
¢ W and B are estimates of the within-imputation and between-imputation variation. M e ‘);D'

of x.
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Multiple Imputation through Chained Equations
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e Developed by van Buuren [and collaborators]
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1. Discard all observations for which everything is missing.

~C

2. For all missing observations, fillin the missing téca wit‘ rand
from the observed values.
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¢ There are many ways to impute variables using the MICE algorithm

o - L A N
o Regression (linear, or logistic , or multinomial) ) 6~ g( (O) 50_»-(‘[@ .

ANANAANAL
o Predictive Mean Matching (PMM) -- the default in MICE for continuous
variables

= Create predicted value for missing variable from regression model

= Pick the three cases that have the closest predicted values (in terms
of Euclidean distance)

= Randomly choose one of the three values to impute
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Bayesian Data Augmentation | 12 % 4 ¢
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e MICE imputations are a form of Markov Chain 2 \ ,

* You know where else we build Markov Chains? la .
e Build a missing data modmmﬂhierarchical) modeH

treating the missing values as just another parameter to estimate by

drawing out of its posterior distribyti
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¢ What we want to do is integrate out the missing values by sampling from !
the total distribution, then averaging out the beta distributions over the — @
space of missing data points
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¢ As long as the data are MAR and that the likelihood of missingness is not — -

related to S (the "ignorability") assumption, this works fine
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