How do we handle missing data?

Friday, November 30, 2012 2:20 PM

> It is extremely common for observations to be partially or completely missing for important data sets, especially observational data sets

- So what?
 - Models cannot be estimated on missing data without some kind of processing
 - Missing data contains potentially important information
 - Simply removing the missing cases can cause more variable (best case) or even biased (worst case) estimates

• Given that we have to use these flawed data sets... how do we use them in a way that minimizes the harm to interence

Missingness Patterns

Friday, November 30, 2012 2:38 PM

54stematic missingness

- Usually, data is missing in three ways:
 - 1) Missing Completely at Random (MCAR): the occurrence of missing values for a variable is not related to the missing value, the values of any other variables, or the pattern of missingness in other variables

Mistalus

2) Missing at Random (MAR): the occurrence of missing values for a variable is random, contingent on the value or missingness of observable variables

modelable Missinguess

3) Missing Not at Random (MNAR): the occurrence of missing values is systematically related to unknown or unmeasured covariate factors

• Each form of missingness has different potential consequences

MAR (ummodeled) -> bias & efficiency

MAR (ummodeled) -> bias & efficiency

Sample selection

MODEL MAR -> Maybe (less) efficiency problem

 Idea: we can fix MCAR and MAR data to look like non-missing data by filling in values based on what we DO know, reducing bias and inefficiency

NMAR/MNAR: " bias & efficieny.

Early ideas

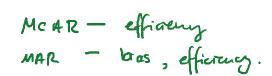
Friday, November 30, 2012 2:35 PM

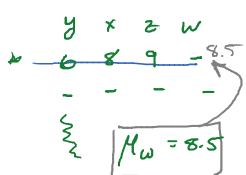
> Scholars have traditionally used many ad hoc methods for handling missing data

*

1) Listwise deletion: drop any case with missing data on ANY observation

- a. Probably the most common naïve method for handling missing data
- b. Implemented by default in Stata and (usually) R
- c. Maximum loss of information





2) Mean (or multivariate distribution) imputation: replace missing values with the observed mean (or draws from the multivariate distribution) of the variable

- a. Understates variability in the imputed variable
- b. Makes no (or a limited) attempt to recover associations between the variables

Z X

Pxz = .6

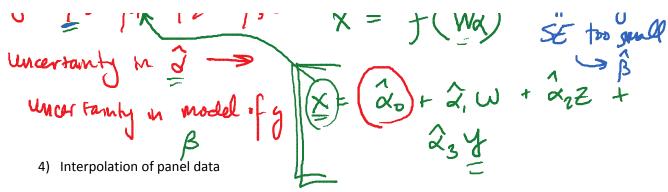
- 3) Regression-based imputation
 - a. Implemented in the "impute" command in Stata
 - b. Uncertainty about the quality of the estimate is not included in estimates using the imputed data

y = Bot Bix +bzw + /3 Z

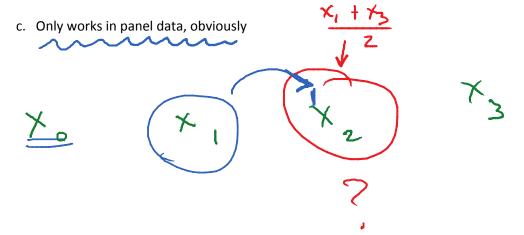
$$\hat{x} = f(w\hat{x})$$

(Was) efficiency > SE too qual

Mx=3 Hz=5

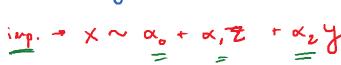


- a. If value is missing, either use the observation from the last time period OR a linear interpolation of the previous and next observation
- b. Some evidence that this technique creates bias and overconfidence in estimates



Better idea: multiple imputation

Friday, November 30, 2012 3:31 PM



- We want to account for the uncertainty in our imputed variable
- use a model of some kind (e.g., regression?) to predict the missing observations using non-missing observations...
- Instead of simply picking one value for a missing value, we pick many... and our uncertainty is represented in the VCV matrix of the β coefficients we use to predict the missing values!

draw (d) out of asymptotic dist.

- 1) We pick m many values of $\hat{\alpha}$ out of its asymptotic distribution, the multivariate normal, using our estimates of $\hat{\alpha}$ and the VCV $\hat{\Sigma}$ to fill in the mean and VCV of this distribution $\Phi(\hat{\alpha},\hat{\Sigma})$
- 2) predict m many values of the missing value, creating m many data sets
- 3) re-calculate <u>m</u> new estimates of $\tilde{\beta} = \sum_{m=1}^{M} \tilde{\beta}_{m}$ using each of the imputed datasets, and then calculate the standard error of our final $\tilde{\beta}$ using the following formula developed by Donald Rubin:

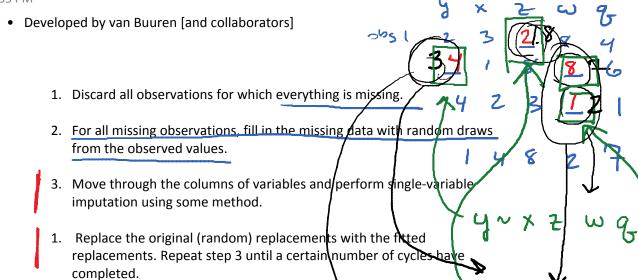
by Donald Rubin: In Flatin in the SES of $\tilde{\beta}$ that we $V_{\beta} = W + \left(1 + \frac{1}{m}\right)B$ ous estimate of where $W = \frac{1}{m}\sum_{m=1}^{M} {\tilde{\beta}_{m}^{2}}$ and $B = \frac{1}{m-1}\sum_{m=1}^{M} {(\tilde{\beta}_{m} - \tilde{\beta})^{2}}$ and $B = \frac{1}{m-1}\sum_{m=1}^{M} {(\tilde{\beta}_{m} - \tilde{\beta})^{2}}$ and $B = \frac{1}{m-1}\sum_{m=1}^{M} {(\tilde{\beta}_{m} - \tilde{\beta})^{2}}$

• W and B are estimates of the within-imputation and between-imputation variation. In its putation of X.

drew in dot of the the ory dist of of

Multiple Imputation through Chained Equations

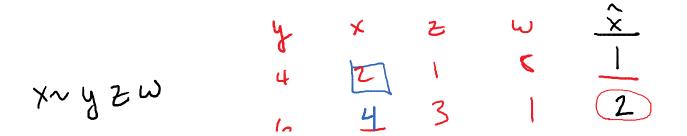
Friday, November 30, 2012 3:35 PM

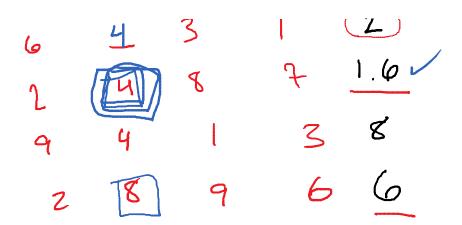


- There are many ways to impute variables using the MICE algorithm
 - Regression (linear, or logistic, or multinomial) $\hat{\omega} \sim f(\hat{\omega})$ sample
 - Predictive Mean Matching (PMM) -- the default in MICE for continuous variables

5. Do stages 1-4 m many times to create m imported data sets.

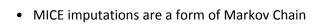
- Create predicted value for missing variable from regression model
- Pick the three cases that have the closest predicted values (in terms of Euclidean distance)
- Randomly choose one of the three values to impute

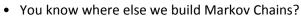




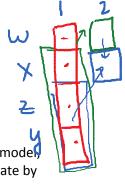
Bayesian Data Augmentation

Friday, November 30, 2012 3:52 PM





 Build a missing data model right into a Bayesian (hierarchical) modely treating the missing values as just another parameter to estimate by drawing out of its posterior distribution



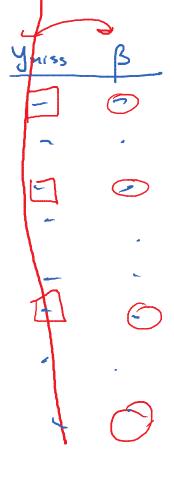
 $f(\beta, y_{miss}|y_{obs}) \propto f(y_{obs}|\beta, y_{miss}) f(\beta, y_{miss})$

S (= Po)

 What we want to do is integrate out the missing values by sampling from the total distribution, then averaging out the beta distributions over the space of missing data points

$$f(\beta|y_{obs}) \propto \int_{Y_{miss}} f(y_{all}|\beta) f(\beta) \left[\int_{B} f(y_{miss}|\beta, y_{obs}) f(\beta) \, d\beta \right] \, dy_{miss}$$

• As long as the data are MAR and that the likelihood of missingness is not related to β (the "ignorability") assumption, this works fine



f(po,pi,pz) f(po)pi,pz)