What is Bayesian Inference?
Saturday, September 01, 201. 2:02 PM

w In Palitical Science, "Bayesian inference" encompasses many interrelated but
distinct ideas
3 An epistemological viewpoint about the relationship between evidence

andgonclusions .~~~ |
3 Margument about the logically correct beliefs one should
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hold_gi ior information (information external to the data set) an
information contained in a data set

3 Agetroftechnicatanskéomputational tools for d g this betigf
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distribution in complex situations

w We will examine each of these ideas in turn, focusing on the first two today
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Bayesian vs. Frequentist epistemology
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w Probably neither Bayesian nor frequentist ideas are developed enough to
constitute a full epistemology or philosophy of science, but they do have st
points that are very different from one another

w Frequentists presume that there is a knowable state of the world th

A
corresponds to some_estimated parameter or quantity in a model biaS /_’; —> /@

3 ungcertainty in estimates (presuming proper specification, etc.) comes fi
noise in the data generating process that obscures the sigrfa"\"‘"" . s
3 Probabifity tists roduced areproba s estimate
occurring given some state of the world and an (estimated) degree ¢f n ">
in the world ‘f( cata PJ
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A Ex: a lefitail p-value for an estimated OLS coefficien®i€ § 1
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w Bayesians are more interested in the connection between evidence and a pa
of beliefsthan in evidence and thtrue state of the worl, which is unknown and -

possibly unknowable
3 ldea: given what | believed before this study, and the likelihood of wha
saw in evidence given my beliefs, what should | believe after this Study
3 uncertainty in_estimates can come from multiple places, including mult
states of the world, true noise/error, anW
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Likelihood vs. Posterior
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(t_Likelihood: the probability that a particular data set (or estimate from a data set) occurs given the state of 1
WOrliaG

w e.g.: suppose we flip a colitimes, and the coin has an unknowhreta probability of landing on heads. The
likelihood that the coin lands on heak¢times giverthetais:

2|0 0 0= pr (hesds) 3
3 Frequentists focus on this quaftity; e.g., a "maximum likelihood" analysis would input N and k and th:

numerica —that made0 (& as large as possible = =
w This is typically NOT the quantity that+esearchers/consumers of research are interested in

3 Wouldn't we want to knowd GsQ, the probability that theta is some particular value given the numbel
heads? A

3 e.g., in application we might want to know the probability tBab— 1@®sQ and/or0 G— T@®sQ --
whether the coin is fair g W e A A~

w In Bayesian terminology, beliefs are probability distributions over a set of states of the world (parameters,
estimated quantities, hypotheses, etc.)

w The point of analysis is to determine the beliefs that a researcher should rationally hold after having seen tt
set, s-calledposterior beliefs

3 State of the worI@ /

3 Discrete—beliefisD 6— — OO G
AN W
3 Cp@g@&s—:/belief that— g is, "Q—<Q 00O ®

w How do we do that?
AN\ NNANA/
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Bayes' Rule
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w There is a mathematical relationship between a likelihood and a posterior belief: Bayes' Rule

w Abstract variant: let A and B be distinct events. Then:

This is easy to THOSTrAte with a simple Venn diagram. It can also be proved if we accept definitionally that:

0 6606 0 0676

That is, the probability that A and B both occur is the probability that B occurs times the probability that A «
given that B has already occurred.

w This extends easily to multiple events:
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